Advertisement

The conundrum of breast cancer and microbiome - A comprehensive review of the current evidence

Published:October 12, 2022DOI:https://doi.org/10.1016/j.ctrv.2022.102470

      Highlights

      • Polymorphic microbiomes can be involved in carcinogenesis and response to treatment.
      • Firmicutes, Actinobacteria, Proteobacteria and Bacteroides are common phyla in breast milk.
      • Microbiome composition differs between healthy and breast cancer tissue.
      • Breast and gut microbiome impact breast cancer features and response to treatment.
      • Estrogen-metabolizing gut bacteria and their potential role in breast carcinogenesis are presented.

      Abstract

      Disturbance of the microbial balance of a habitat can have detrimental effects on the health of the individual and, in addition, polymorphic microbiomes were recently suggested as emerging cancer hallmarks. Modern sequencing and metagenomics techniques have allowed characterization of intratumoral microbiome composition even in tissues such as the breast. We conducted a comprehensive literature review on different aspects related to the microbial landscape of the breast tissue and breast tumors, as well as its relation to systemic therapy. Emerging data suggest varying microbiome composition intratumorally compared to the normal breast tissue and other tumor types. Differences in the microbes present in normal breast and cancerous lesions of the breast have also been described, as well as potential correlation between microbiome composition and breast cancer subtype and stage. The interplay between gut and breast microbiome is not well understood although bacterial allocation through mesenteric lymph nodes has been suggested as a possible pathway. Moreover, gut bacteria with estrogen metabolizing properties are of special interest in the context of breast cancer and available knowledge and reported studies are hereby described. The relationship of gut microbiome and cancer therapy is another aspect of interest and available data are presented. Notwithstanding, the field of microbiome in the context of breast cancer is starting to evolve and a number of questions arise, with the gut-breast-cancer therapy axis in the center.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment
      ESMO Member Login
      Login with your ESMO username and password.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kwa M.
        • Plottel C.S.
        • Blaser M.J.
        • et al.
        The Intestinal Microbiome and Estrogen Receptor-Positive Female Breast Cancer.
        J Natl Cancer Inst. 2016; 108
        • Urbaniak C.
        • Gloor G.B.
        • Brackstone M.
        • et al.
        The Microbiota of Breast Tissue and Its Association with Breast Cancer.
        Appl Environ Microbiol. 2016; 82: 5039-5048
        • Hanahan D.
        Hallmarks of Cancer: New Dimensions.
        Cancer Discov. 2022; 12: 31-46
        • Meng S.
        • Chen B.
        • Yang J.
        • et al.
        Study of Microbiomes in Aseptically Collected Samples of Human Breast Tissue Using Needle Biopsy and the Potential Role of in situ Tissue Microbiomes for Promoting Malignancy.
        Front Oncol. 2018; 8: 318
        • Xuan C.
        • Shamonki J.M.
        • Chung A.
        • et al.
        Microbial dysbiosis is associated with human breast cancer.
        PLoS ONE. 2014; 9: e83744
        • Chan A.A.
        • Bashir M.
        • Rivas M.N.
        • et al.
        Characterization of the microbiome of nipple aspirate fluid of breast cancer survivors.
        Sci Rep. 2016; 6: 28061
        • Fernández M.F.
        • Reina-Pérez I.
        • Astorga J.M.
        • et al.
        Breast Cancer and Its Relationship with the Microbiota.
        Int J Environ Res Public Health. 2018; 15
        • Rodríguez J.M.
        • Fernández L.
        • Verhasselt V.
        The Gut-Breast Axis: Programming Health for Life.
        Nutrients. 2021; 13
        • Rodríguez J.M.
        The origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation?.
        Adv Nutr. 2014; 5: 779-784
        • Stewart C.J.
        • Ajami N.J.
        • O'Brien J.L.
        • et al.
        Temporal development of the gut microbiome in early childhood from the TEDDY study.
        Nature. 2018; 562: 583-588
        • Wang Z.
        • Neupane A.
        • Vo R.
        • et al.
        Comparing Gut Microbiome in Mothers' Own Breast Milk- and Formula-Fed Moderate-Late Preterm Infants.
        Front Microbiol. 2020; 11: 891
        • Alpuim Costa D.
        • Nobre J.G.
        • Batista M.V.
        • et al.
        Human Microbiota and Breast Cancer-Is There Any Relevant Link?-A Literature Review and New Horizons Toward Personalised Medicine.
        Front Microbiol. 2021; 12584332
        • Hong B.S.
        • Lee K.P.
        A systematic review of the biological mechanisms linking physical activity and breast cancer.
        Physical activity and nutrition. 2020; 24: 25-31
        • Pouchieu C.
        • Deschasaux M.
        • Hercberg S.
        • et al.
        Prospective association between red and processed meat intakes and breast cancer risk: modulation by an antioxidant supplementation in the SU.VI.MAX randomized controlled trial.
        Int J Epidemiol. 2014; 43: 1583-1592
        • Frugé A.D.
        • Van der Pol W.
        • Rogers L.Q.
        • et al.
        Fecal Akkermansia muciniphila Is Associated with Body Composition and Microbiota Diversity in Overweight and Obese Women with Breast Cancer Participating in a Presurgical Weight Loss Trial.
        J Acad Nutr Diet. 2020; 120: 650-659
        • Wastyk H.C.
        • Fragiadakis G.K.
        • Perelman D.
        • et al.
        Gut-microbiota-targeted diets modulate human immune status.
        Cell. 2021; 184: 4137-4153
        • Consortium HMP
        Structure, function and diversity of the healthy human microbiome.
        Nature. 2012; 486: 207-214
        • Eckburg P.B.
        • Bik E.M.
        • Bernstein C.N.
        • et al.
        Diversity of the human intestinal microbial flora.
        Science. 2005; 308: 1635-1638
        • Guan X.
        • Ma F.
        • Sun X.
        • et al.
        Gut Microbiota Profiling in Patients With HER2-Negative Metastatic Breast Cancer Receiving Metronomic Chemotherapy of Capecitabine Compared to Those Under Conventional Dosage.
        Front Oncol. 2020; 10: 902
        • Nguyen N.P.
        • Warnow T.
        • Pop M.
        • et al.
        A perspective on 16S rRNA operational taxonomic unit clustering using sequence similarity.
        NPJ Biofilms Microbiomes. 2016; 2: 16004
        • Liu Y.X.
        • Qin Y.
        • Chen T.
        • et al.
        A practical guide to amplicon and metagenomic analysis of microbiome data. Protein.
        Cell. 2020; 12: 315-330
        • Kralik P.
        • Ricchi M.
        A Basic Guide to Real Time PCR in Microbial Diagnostics: Definitions, Parameters, and Everything.
        Front Microbiol. 2017; 8: 108
        • Sharpton T.J.
        An introduction to the analysis of shotgun metagenomic data.
        Front Plant Sci. 2014; 5: 209
        • Latuga M.S.
        • Stuebe A.
        • Seed P.C.
        A review of the source and function of microbiota in breast milk.
        Semin Reprod Med. 2014; 32: 68-73
        • Hunt K.M.
        • Foster J.A.
        • Forney L.J.
        • et al.
        Characterization of the diversity and temporal stability of bacterial communities in human milk.
        PLoS ONE. 2011; 6: e21313
        • Ward T.L.
        • Hosid S.
        • Ioshikhes I.
        • et al.
        Human milk metagenome: a functional capacity analysis.
        BMC Microbiol. 2013; 13: 116
        • Murphy K.
        • Curley D.
        • O'Callaghan T.F.
        • et al.
        The Composition of Human Milk and Infant Faecal Microbiota Over the First Three Months of Life: A Pilot Study.
        Sci Rep. 2017; 7: 40597
        • Ojo-Okunola A.
        • Nicol M.
        • du Toit E.
        Human Breast Milk Bacteriome in Health and Disease.
        Nutrients. 2018; 10: 1643
        • Cabrera-Rubio R.
        • Collado M.C.
        • Laitinen K.
        • et al.
        The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery.
        Am J Clin Nutr. 2012; 96: 544-551
        • Khodayar-Pardo P.
        • Mira-Pascual L.
        • Collado M.C.
        • et al.
        Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota.
        J Perinatol. 2014; 34: 599-605
        • Boix-Amorós A.
        • Collado M.C.
        • Mira A.
        Relationship between Milk Microbiota, Bacterial Load, Macronutrients, and Human Cells during Lactation.
        Front Microbiol. 2016; 7: 492
        • Elinav E.
        • Nowarski R.
        • Thaiss C.A.
        • et al.
        Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms.
        Nat Rev Cancer. 2013; 13: 759-771
        • Gur C.
        • Ibrahim Y.
        • Isaacson B.
        • et al.
        Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack.
        Immunity. 2015; 42: 344-355
        • Qiao H.
        • Tan X.R.
        • Li H.
        • et al.
        Association of Intratumoral Microbiota With Prognosis in Patients With Nasopharyngeal Carcinoma From 2 Hospitals in China.
        JAMA Oncol. 2022; 8: 1301-1309
        • Louis P.
        • Hold G.L.
        • Flint H.J.
        The gut microbiota, bacterial metabolites and colorectal cancer.
        Nat Rev Microbiol. 2014; 12: 661-672
        • Münger K.
        • Baldwin A.
        • Edwards K.M.
        • et al.
        Mechanisms of human papillomavirus-induced oncogenesis.
        J Virol. 2004; 78: 11451-11460
        • Cheng Y.
        • Ling Z.
        • Li L.
        The Intestinal Microbiota and Colorectal Cancer.
        Front Immunol. 2020; 11615056
        • Rutkowski M.R.
        • Stephen T.L.
        • Svoronos N.
        • et al.
        Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation.
        Cancer Cell. 2015; 27: 27-40
        • Schwabe R.F.
        • Jobin C.
        The microbiome and cancer.
        Nat Rev Cancer. 2013; 13: 800-812
        • Winter S.E.
        • Winter M.G.
        • Xavier M.N.
        • et al.
        Host-derived nitrate boosts growth of E. coli in the inflamed gut.
        Science. 2013; 339: 708-711
        • Chen Y.
        • Yang S.
        • Tavormina J.
        • et al.
        Oncogenic collagen I homotrimers from cancer cells bind to α3β1 integrin and impact tumor microbiome and immunity to promote pancreatic cancer.
        Cancer Cell. 2022; 40: 818-834.e9
        • Buchta Rosean C.
        • Bostic R.R.
        • Ferey J.C.M.
        • et al.
        Preexisting Commensal Dysbiosis Is a Host-Intrinsic Regulator of Tissue Inflammation and Tumor Cell Dissemination in Hormone Receptor-Positive Breast Cancer.
        Cancer Res. 2019; 79: 3662-3675
        • Fu A.
        • Yao B.
        • Dong T.
        • et al.
        Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer.
        Cell. 2022; 185: 1356-1372.e26
        • Wang H.
        • Altemus J.
        • Niazi F.
        • et al.
        Breast tissue, oral and urinary microbiomes in breast cancer.
        Oncotarget. 2017; 8: 88122-88138
        • Nejman D.
        • Livyatan I.
        • Fuks G.
        • et al.
        The human tumor microbiome is composed of tumor type-specific intracellular bacteria.
        Science. 2020; 368: 973-980
        • Flanagan L.
        • Schmid J.
        • Ebert M.
        • et al.
        Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome.
        Eur J Clin Microbiol Infect Dis. 2014; 33: 1381-1390
        • Serna G.
        • Ruiz-Pace F.
        • Hernando J.
        • et al.
        Fusobacterium nucleatum persistence and risk of recurrence after preoperative treatment in locally advanced rectal cancer.
        Ann Oncol. 2020; 31: 1366-1375
        • Parhi L.
        • Alon-Maimon T.
        • Sol A.
        • et al.
        Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression.
        Nat Commun. 2020; 11: 3259
        • Banerjee S.
        • Tian T.
        • Wei Z.
        • et al.
        Distinct Microbial Signatures Associated With Different Breast Cancer Types.
        Front Microbiol. 2018; 9: 951
        • Hieken T.J.
        • Chen J.
        • Hoskin T.L.
        • et al.
        The Microbiome of Aseptically Collected Human Breast Tissue in Benign and Malignant Disease.
        Sci Rep. 2016; 6: 30751
        • Thompson K.J.
        • Ingle J.N.
        • Tang X.
        • et al.
        A comprehensive analysis of breast cancer microbiota and host gene expression.
        PLoS ONE. 2017; 12: e0188873
        • Silva-Valenzuela C.A.
        • Desai P.T.
        • Molina-Quiroz R.C.
        • et al.
        Solid tumors provide niche-specific conditions that lead to preferential growth of Salmonella.
        Oncotarget. 2016; 7: 35169-35180
        • Parida S.
        • Wu S.
        • Siddharth S.
        • et al.
        A pro-carcinogenic colon microbe promotes breast tumorigenesis and metastatic progression and concomitantly activates Notch and betacatenin axes.
        Cancer discovery. 2021; 11: 1138-1157
        • Plottel C.S.
        • Blaser M.J.
        Microbiome and malignancy.
        Cell Host Microbe. 2011; 10: 324-335
        • Yang J.
        • Tan Q.
        • Fu Q.
        • et al.
        Gastrointestinal microbiome and breast cancer: correlations, mechanisms and potential clinical implications.
        Breast Cancer. 2017; 24: 220-228
        • Labrie F.
        • Martel C.
        • Balser J.
        Wide distribution of the serum dehydroepiandrosterone and sex steroid levels in postmenopausal women: role of the ovary?.
        Menopause. 2011; 18: 30-43
        • Adlercreutz H.
        • Martin F.
        • Pulkkinen M.
        • et al.
        Intestinal Metabolism of Estrogens1.
        The Journal of Clinical Endocrinology & Metabolism. 1976; 43: 497-505
        • Flores R.
        • Shi J.
        • Fuhrman B.
        • et al.
        Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study.
        Journal of translational medicine. 2012; 10: 253
        • Mani S.
        Microbiota and Breast Cancer, Progress in Molecular Biology and Translational Science.
        Elsevier, 2017: 217-229
        • Dabek M.
        • McCrae S.I.
        • Stevens V.J.
        • et al.
        Distribution of beta-glucosidase and beta-glucuronidase activity and of beta-glucuronidase gene gus in human colonic bacteria.
        FEMS Microbiol Ecol. 2008; 66: 487-495
        • Reddy B.S.
        • Engle A.
        • Simi B.
        • et al.
        Effect of low-fat, high-carbohydrate, high-fiber diet on fecal bile acids and neutral sterols.
        Prev Med. 1988; 17: 432-439
        • Zengul A.G.
        • Demark-Wahnefried W.
        • Barnes S.
        • et al.
        Associations between Dietary Fiber, the Fecal Microbiota and Estrogen Metabolism in Postmenopausal Women with Breast Cancer.
        Nutr Cancer. 2021; 73: 1108-1117
        • Zhu J.
        • Liao M.
        • Yao Z.
        • et al.
        Breast cancer in postmenopausal women is associated with an altered gut metagenome.
        Microbiome. 2018; 6: 136
        • Sinha T.
        • Vich Vila A.
        • Garmaeva S.
        • et al.
        Analysis of 1135 gut metagenomes identifies sex-specific resistome profiles.
        Gut Microbes. 2019; 10: 358-366
        • Kumar M.
        • Kumar A.
        • Nagpal R.
        • et al.
        Cancer-preventing attributes of probiotics: an update.
        Int J Food Sci Nutr. 2010; 61: 473-496
        • Byrd D.A.
        • Vogtmann E.
        • Wu Z.
        • et al.
        Associations of fecal microbial profiles with breast cancer and nonmalignant breast disease in the Ghana Breast Health Study.
        Int J Cancer. 2021; 148: 2712-2723
        • Aarnoutse R.
        • Hillege L.E.
        • Ziemons J.
        • et al.
        Intestinal Microbiota in Postmenopausal Breast Cancer Patients and Controls.
        Cancers (Basel). 2021; 13: 6200
        • Goedert J.J.
        • Jones G.
        • Hua X.
        • et al.
        Investigation of the association between the fecal microbiota and breast cancer in postmenopausal women: a population-based case-control pilot study.
        J Natl Cancer Inst. 2015; 107
        • Terrisse S.
        • Derosa L.
        • Iebba V.
        • et al.
        Intestinal microbiota influences clinical outcome and side effects of early breast cancer treatment.
        Cell Death Differ. 2021; 28: 2778-2796
        • Luu T.H.
        • Michel C.
        • Bard J.M.
        • et al.
        Intestinal Proportion of Blautia sp. is Associated with Clinical Stage and Histoprognostic Grade in Patients with Early-Stage Breast Cancer.
        Nutr Cancer. 2017; 69: 267-275
        • Wu A.H.
        • Tseng C.
        • Vigen C.
        • et al.
        Gut microbiome associations with breast cancer risk factors and tumor characteristics: a pilot study.
        Breast Cancer Res Treat. 2020; 182: 451-463
        • Mirzoyan N.
        • Pepoyan A.
        • Trchounian A.
        Modification of the biophysical characteristics of membranes in commensal Escherichia coli strains from breast cancer patients.
        FEMS Microbiol Lett. 2006; 254: 81-86
        • Yonekura S.
        • Terrisse S.
        • Alves Costa Silva C.
        • et al.
        Cancer induces a stress ileopathy depending on B-adrenergic receptors and promoting dysbiosis that contribute to carcinogenesis.
        Cancer Discov. 2022; 12: 1128-1151
        • Suzuki R.
        • Orsini N.
        • Saji S.
        • et al.
        Body weight and incidence of breast cancer defined by estrogen and progesterone receptor status–a meta-analysis.
        Int J Cancer. 2009; 124: 698-712
        • Pierobon M.
        • Frankenfeld C.L.
        Obesity as a risk factor for triple-negative breast cancers: a systematic review and meta-analysis.
        Breast Cancer Res Treat. 2013; 137: 307-314
        • Viaud S.
        • Saccheri F.
        • Mignot G.
        • et al.
        The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide.
        Science. 2013; 342: 971-976
        • Daillère R.
        • Vétizou M.
        • Waldschmitt N.
        • et al.
        Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects.
        Immunity. 2016; 45: 931-943
        • Chiba A.
        • Bawaneh A.
        • Velazquez C.
        • et al.
        Neoadjuvant Chemotherapy Shifts Breast Tumor Microbiota Populations to Regulate Drug Responsiveness and the Development of Metastasis.
        Mol Cancer Res. 2020; 18: 130-139
        • Alexander J.L.
        • Wilson I.D.
        • Teare J.
        • et al.
        Gut microbiota modulation of chemotherapy efficacy and toxicity.
        Nat Rev Gastroenterol Hepatol. 2017; 14: 356-365
        • Karin M.
        • Jobin C.
        • Balkwill F.
        Chemotherapy, immunity and microbiota–a new triumvirate?.
        Nat Med. 2014; 20: 126-127
        • Pflug N.
        • Kluth S.
        • Vehreschild J.J.
        • et al.
        Efficacy of antineoplastic treatment is associated with the use of antibiotics that modulate intestinal microbiota.
        Oncoimmunology. 2016; 5: e1150399
        • Zhang X.
        • Yu L.
        • Shi J.
        • et al.
        Antibiotics modulate neoadjuvant therapy efficiency in patients with breast cancer: a pilot analysis.
        Sci Rep. 2021; 11: 14024
        • Geller L.T.
        • Barzily-Rokni M.
        • Danino T.
        • et al.
        Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine.
        Science. 2017; 357: 1156-1160
        • Iida N.
        • Dzutsev A.
        • Stewart C.A.
        • et al.
        Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment.
        Science. 2013; 342: 967-970
        • Gui Q.F.
        • Lu H.F.
        • Zhang C.X.
        • et al.
        Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model.
        Genet Mol Res. 2015; 14: 5642-5651
        • Su J.
        • Li D.
        • Chen Q.
        • et al.
        Anti-breast Cancer Enhancement of a Polysaccharide From Spore of Ganoderma lucidum With Paclitaxel: Suppression on Tumor Metabolism With Gut Microbiota Reshaping.
        Front Microbiol. 2018; 9: 3099
        • Zidi O.
        • Souai N.
        • Raies H.
        • et al.
        Fecal Metabolic Profiling of Breast Cancer Patients during Neoadjuvant Chemotherapy Reveals Potential Biomarkers.
        Molecules. 2021; 26: 18
        • Aarnoutse R.
        • Ziemons J.
        • Hillege L.E.
        • et al.
        Changes in intestinal microbiota in postmenopausal oestrogen receptor-positive breast cancer patients treated with (neo)adjuvant chemotherapy. npj.
        Breast Cancer. 2022; 8: 89
        • Napeñas J.J.
        • Brennan M.T.
        • Coleman S.
        • et al.
        Molecular methodology to assess the impact of cancer chemotherapy on the oral bacterial flora: a pilot study.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010; 109: 554-560
        • Rigby R.J.
        • Carr J.
        • Orgel K.
        • et al.
        Intestinal bacteria are necessary for doxorubicin-induced intestinal damage but not for doxorubicin-induced apoptosis.
        Gut Microbes. 2016; 7: 414-423
        • Di Modica M.
        • Gargari G.
        • Regondi V.
        • et al.
        Gut microbiota condition the therapeutic efficacy of trastuzumab in HER2-positive breast cancer.
        Cancer Res. 2021; 81: 2195-2206
        • Shi J.
        • Geng C.
        • Sang M.
        • et al.
        Effect of gastrointestinal microbiome and its diversity on the expression of tumor-infiltrating lymphocytes in breast cancer.
        Oncology letters. 2019; 17: 5050-5056
        • Prat A.
        • Guarneri V.
        • Paré L.
        • et al.
        A multivariable prognostic score to guide systemic therapy in early-stage HER2-positive breast cancer: a retrospective study with an external evaluation.
        Lancet Oncol. 2020; 21: 1455-1464
        • Dieci M.V.
        • Conte P.
        • Bisagni G.
        • et al.
        Association of tumor-infiltrating lymphocytes with distant disease-free survival in the ShortHER randomized adjuvant trial for patients with early HER2+ breast cancer.
        Ann Oncol. 2019; 30: 418-423
        • Secombe K.R.
        • Ball I.A.
        • Shirren J.
        • et al.
        Pathophysiology of neratinib-induced diarrhea in male and female rats: microbial alterations a potential determinant.
        Breast cancer (Tokyo, Japan). 2021; 28: 99-109
        • Chaput N.
        • Lepage P.
        • Coutzac C.
        • et al.
        Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab.
        Ann Oncol. 2017; 28: 1368-1379
        • Gopalakrishnan V.
        • Spencer C.N.
        • Nezi L.
        • et al.
        Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients.
        Science. 2018; 359: 97-103
        • Matson V.
        • Fessler J.
        • Bao R.
        • et al.
        The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients.
        Science. 2018; 359: 104-108
        • McCulloch J.A.
        • Davar D.
        • Rodrigues R.R.
        • et al.
        Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1.
        Nat Med. 2022; 28: 545-556
        • Routy B.
        • Le Chatelier E.
        • Derosa L.
        • et al.
        Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors.
        Science. 2018; 359: 91-97
        • Abu-Sbeih H.
        • Herrera L.N.
        • Tang T.
        • et al.
        Impact of antibiotic therapy on the development and response to treatment of immune checkpoint inhibitor-mediated diarrhea and colitis.
        J Immunother Cancer. 2019; 7: 242
        • Derosa L.
        • Routy B.
        • Desilets A.
        • et al.
        Microbiota-Centered Interventions: The Next Breakthrough in Immuno-Oncology?.
        Cancer Discov. 2021; 11: 2396-2412
        • Baruch E.N.
        • Youngster I.
        • Ben-Betzalel G.
        • et al.
        Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients.
        Science. 2021; 371: 602-609
        • Davar D.
        • Dzutsev A.K.
        • McCulloch J.A.
        • et al.
        Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients.
        Science. 2021; 371: 595-602