Advertisement

Impact of molecular profiling on the management of patients with myelofibrosis

      Highlights

      • MPN driver mutations correlate with clinical features and prognosis in MF.
      • NGS testing detects additional somatic mutations in >50% of MF patients at diagnosis.
      • High molecular risk mutations portend increased leukemic risk and worse survival.
      • Molecular profiling is mainly used for transplant decision making in MF.
      • Molecular profiling will be crucial for immunotherapy and target-directed treatments.

      Abstract

      Myelofibrosis (MF) is a chronic myeloproliferative neoplasm (MPN) characterized by a highly heterogeneous clinical course, which can be complicated by severe constitutional symptoms, massive splenomegaly, progressive bone marrow failure, cardiovascular events, and development of acute leukemia. Constitutive signaling through the JAK-STAT pathway plays a fundamental role in its pathogenesis, generally due to activating mutations of JAK2, CALR and MPL genes (i.e., the MPN driver mutations), present in most MF patients. Next Generation Sequencing (NGS) panel testing has shown that additional somatic mutations can already be detected at the time of diagnosis in more than half of patients, and that they accumulate along the disease course. These mutations, mostly affecting epigenetic modifiers or spliceosome components, may cooperate with MPN drivers to favor clonal dominance or influence the clinical phenotype, and some, such as high molecular risk mutations, correlate with a more aggressive clinical course with poor treatment response. The current main role of molecular profiling in clinical practice is prognostication, principally for selecting high-risk patients who may be candidates for transplantation, the only curative treatment for MF to date. To this end, contemporary prognostic models incorporating molecular data are useful tools to discriminate different risk categories. Aside from certain clinical situations, decisions regarding medical treatment are not based on patient molecular profiling, yet this approach may become more relevant in novel treatment strategies, such as the use of vaccines against the mutant forms of JAK2 or CALR, or drugs directed against actionable molecular targets.

      Keywords

      To read this article in full you will need to make a payment
      ESMO Member Login
      Login with your ESMO username and password.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tefferi A.
        • Pardanani A.
        Myeloproliferative neoplasms: a contemporary review.
        JAMA Oncol. 2015; 1: 97-105
        • Nangalia J.
        • Green A.R.
        Myeloproliferative neoplasms: from origins to outcomes.
        Blood. 2017; 130: 2475-2483
        • Vainchenker W.
        • Kralovics R.
        Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms.
        Blood. 2017; 129: 667-679
        • Vannucchi A.M.
        • Lasho T.L.
        • Guglielmelli P.
        • Biamonte F.
        • Pardanani A.
        • Pereira A.
        • et al.
        Mutations and prognosis in primary myelofibrosis.
        Leukemia. 2013; 27: 1861-1869
        • Spiegel J.Y.
        • McNamara C.
        • Kennedy J.A.
        • Panzarella T.
        • Arruda A.
        • Stockley T.
        • et al.
        Impact of genomic alterations on outcomes in myelofibrosis patients undergoing JAK1/2 inhibitor therapy.
        Blood Adv. 2017; 1: 1729-1738
        • Newberry K.J.
        • Patel K.
        • Masarova L.
        • Luthra R.
        • Manshouri T.
        • Jabbour E.
        • et al.
        Clonal evolution and outcomes in myelofibrosis after ruxolitinib discontinuation.
        Blood. 2017; 130: 1125-1131
        • Coltro G.
        • Rotunno G.
        • Mannelli L.
        • Mannarelli C.
        • Fiaccabrino S.
        • Romagnoli S.
        • et al.
        RAS/CBL mutations predict resistance to JAK inhibitors in myelofibrosis and are associated with poor prognostic features.
        Blood Adv. 2020; 4: 3677-3687
        • Hultcrantz M.
        • Ravn Landtblom A.
        • Andreasson B.
        • Samuelsson J.
        • Dickman P.W.
        • Kristinsson S.Y.
        • et al.
        Incidence of myeloproliferative neoplasms – trends by subgroup and age in a population-based study in Sweden.
        J Int Med. 2020; 287: 448-454
        • Pastor-Galan I.
        • Hernandez-Boluda J.C.
        • Correa J.G.
        • Alvarez-Larran A.
        • Ferrer-Marin F.
        • Raya J.M.
        • et al.
        Clinico-biological characteristics of patients with myelofibrosis: an analysis of 1,000 cases from the Spanish Registry of Myelofibrosis.
        Med Clin (Barc). 2020; 155: 152-158
        • Cervantes F.
        • Dupriez B.
        • Passamonti F.
        • Vannucchi A.M.
        • Morra E.
        • Reilly J.T.
        • et al.
        Improving survival trends in primary myelofibrosis: an international study.
        J Clin Oncol. 2012; 30: 2981-2987
        • Masarova L.
        • Bose P.
        • Daver N.
        • Pemmaraju N.
        • Newberry K.J.
        • Manshouri T.
        • et al.
        Patients with post-essential thrombocythemia and post-polycythemia vera differ from patients with primary myelofibrosis.
        Leuk Res. 2017; 02: 110-116
        • Deeg H.J.
        • Bredeson C.
        • Farnia S.
        • Ballen K.
        • Gupta V.
        • Mesa R.A.
        • et al.
        Hematopoietic cell transplantation as curative therapy for patients with myelofibrosis: long-term success in all age groups.
        Biol Blood Marrow Transplant. 2015; 21: 1883-1887
        • Hernandez-Boluda J.C.
        • Pereira A.
        • Kroger N.
        • Beelen D.
        • Robin M.
        • Bornhauser M.
        • et al.
        Determinants of survival in myelofibrosis patients undergoing allogeneic hematopoietic cell transplantation.
        Leukemia. 2021; 35: 215-224
        • Luque Paz D.
        • Riou J.
        • Verger E.
        • Cassinat B.
        • Chauveau A.
        • Ianotto J.C.
        • et al.
        Genomic analysis of primary and secondary myelofibrosis redefines the prognostic impact of ASXL1 mutations: a FIM study.
        Blood Adv. 2021; 5: 1442-1451
        • Tefferi A.
        • Nicolosi M.
        • Mudireddy M.
        • Szuber N.
        • Finke C.M.
        • Lasho T.L.
        • et al.
        Driver mutations and prognosis in primary myelofibrosis: Mayo-Careggi MPN alliance study of 1,095 patients.
        Am J Hematol. 2018; 93: 348-355
        • Passamonti F.
        • Mora B.
        • Giorgino T.
        • Guglielmelli P.
        • Cazzola M.
        • Maffioli M.
        • et al.
        Driver mutations' effect in secondary myelofibrosis: an international multicenter study based on 781 patients.
        Leukemia. 2017; 31: 970-973
        • Rumi E.
        • Pietra D.
        • Pascutto C.
        • Guglielmelli P.
        • Martinez-Trillos A.
        • Casetti I.
        • et al.
        Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis.
        Blood. 2014; 124: 1062-1069
        • Guglielmelli P.
        • Pacilli A.
        • Rotunno G.
        • Rumi E.
        • Rosti V.
        • Delaini F.
        • et al.
        Presentation and outcome of patients with 2016 WHO diagnosis of prefibrotic and overt primary myelofibrosis.
        Blood. 2017; 129: 3227-3236
        • Lu X.
        • Levine R.
        • Tong W.
        • Wernig G.
        • Pikman Y.
        • Zarnegar S.
        • et al.
        Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation.
        Proc Natl Acad Sci USA. 2005; 102: 18962-18967
        • Pikman Y.
        • Lee B.H.
        • Mercher T.
        • McDowell E.
        • Ebert B.L.
        • Gozo M.
        • et al.
        MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia.
        PLoS Med. 2006; 3: e270
        • Araki M.
        • Yang Y.
        • Masubuchi N.
        • Hironaka Y.
        • Takei H.
        • Morishita S.
        • et al.
        Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms.
        Blood. 2016; 127: 1307-1316
        • Cabagnols X.
        • Defour J.P.
        • Ugo V.
        • Ianotto J.C.
        • Mossuz P.
        • Mondet J.
        • et al.
        Differential association of calreticulin type 1 and type 2 mutations with myelofibrosis and essential thrombocytemia: relevance for disease evolution.
        Leukemia. 2015; 29: 249-252
        • Marty C.
        • Pecquet C.
        • Nivarthi H.
        • El-Khoury M.
        • Chachoua I.
        • Tulliez M.
        • et al.
        Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis.
        Blood. 2016; 127: 1317-1324
        • Tefferi A.
        • Lasho T.L.
        • Tischer A.
        • Wassie E.A.
        • Finke C.M.
        • Belachew A.A.
        • et al.
        The prognostic advantage of calreticulin mutations in myelofibrosis might be confined to type 1 or type 1-like CALR variants.
        Blood. 2014; 124: 2465-2466
        • Tefferi A.
        • Lasho T.L.
        • Finke C.M.
        • Elala Y.
        • Hanson C.A.
        • Ketterling R.P.
        • et al.
        Targeted deep sequencing in primary myelofibrosis.
        Blood Adv. 2016; 1: 105-111
        • Grinfeld J.
        • Nangalia J.
        • Baxter E.J.
        • Wedge D.C.
        • Angelopoulos N.
        • Cantrill R.
        • et al.
        Classification and personalized prognosis in myeloproliferative neoplasms.
        N Engl J Med. 2018; 379: 1416-1430
        • Rotunno G.
        • Pacilli A.
        • Artusi V.
        • Rumi E.
        • Maffioli M.
        • Delaini F.
        • et al.
        Epidemiology and clinical relevance of mutations in postpolycythemia vera and postessential thrombocythemia myelofibrosis: a study on 359 patients of the AGIMM group.
        Am J Hematol. 2016; 91: 681-686
        • Lundberg P.
        • Karow A.
        • Nienhold R.
        • Looser R.
        • Hao-Shen H.
        • Nissen I.
        • et al.
        Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms.
        Blood. 2014; 123: 2220-2228
        • Vainchenker W.
        • Constantinescu S.N.
        • Plo I.
        Recent advances in understanding myelofibrosis and essential thrombocythemia.
        F1000Res. 2016; 5
        • Courtier F.
        • Garnier S.
        • Carbuccia N.
        • Guille A.
        • Adelaide J.
        • Chaffanet M.
        • et al.
        Targeted molecular characterization shows differences between primary and secondary myelofibrosis.
        Genes Chromosom Cancer. 2019;
        • Guglielmelli P.
        • Coltro G.
        • Mannelli F.
        • Rotunno G.
        • Loscocco G.G.
        • Mannarelli C.
        • et al.
        ASXL1 mutations are prognostically significant in PMF, but not MF following essential thrombocythemia or polycythemia vera.
        Blood Adv. 2022; 6: 2927-2931
        • Tefferi A.
        • Lasho T.L.
        • Finke C.M.
        • Knudson R.A.
        • Ketterling R.
        • Hanson C.H.
        • et al.
        CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons.
        Leukemia. 2014; 28: 1472-1477
        • Pardanani A.
        • Guglielmelli P.
        • Lasho T.L.
        • Pancrazzi A.
        • Finke C.M.
        • Vannucchi A.M.
        • et al.
        Primary myelofibrosis with or without mutant MPL: comparison of survival and clinical features involving 603 patients.
        Leukemia. 2011; 25: 1834-1839
        • Guglielmelli P.
        • Biamonte F.
        • Score J.
        • Hidalgo-Curtis C.
        • Cervantes F.
        • Maffioli M.
        • et al.
        EZH2 mutational status predicts poor survival in myelofibrosis.
        Blood. 2011; 118: 5227-5234
        • Marcellino B.K.
        • Verstovsek S.
        • Mascarenhas J.
        The myelodepletive phenotype in myelofibrosis: clinical relevance and therapeutic implication.
        Clin Lymphoma Myeloma Leuk. 2020; 20: 415-421
        • Tefferi A.
        • Finke C.M.
        • Lasho T.L.
        • Hanson C.A.
        • Ketterling R.P.
        • Gangat N.
        • et al.
        U2AF1 mutation types in primary myelofibrosis: phenotypic and prognostic distinctions.
        Leukemia. 2018; 32: 2274-2278
      1. Coltro GMF, Loscocco G, Mannarelli C, Rotunno G, Maccari C, et al. A myelodepletive phenotype is associated with distinctive molecular features and adverse outcomes in patients with myelofibrosis. Blood 2021;138 (Supplement 1):1498.

        • Hultcrantz M.
        • Bjorkholm M.
        • Landgren O.
        • Kristinsson S.Y.
        • Andersson T.M.L.
        Risk for arterial and venous thrombosis in patients with myeloproliferative neoplasms.
        Ann Intern Med. 2018; 169: 268
        • Barbui T.
        • Carobbio A.
        • Cervantes F.
        • Vannucchi A.M.
        • Guglielmelli P.
        • Antonioli E.
        • et al.
        Thrombosis in primary myelofibrosis: incidence and risk factors.
        Blood. 2010; 115: 778-782
        • Finazzi M.C.
        • Carobbio A.
        • Cervantes F.
        • Isola I.M.
        • Vannucchi A.M.
        • Guglielmelli P.
        • et al.
        CALR mutation, MPL mutation and triple negativity identify patients with the lowest vascular risk in primary myelofibrosis.
        Leukemia. 2015 May; 29: 1209-1210
        • Jaiswal S.
        • Natarajan P.
        • Silver A.J.
        • Gibson C.J.
        • Bick A.G.
        • Shvartz E.
        • et al.
        Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease.
        N Engl J Med. 2017; 377: 111-121
        • Barbui T.
        • Finazzi G.
        • Carobbio A.
        • Thiele J.
        • Passamonti F.
        • Rumi E.
        • et al.
        Development and validation of an International Prognostic Score of thrombosis in World Health Organization-essential thrombocythemia (IPSET-thrombosis).
        Blood. 2012; 120 (quiz 252): 5128-5133
        • Guglielmelli P.
        • Carobbio A.
        • Rumi E.
        • De Stefano V.
        • Mannelli L.
        • Mannelli F.
        • et al.
        Validation of the IPSET score for thrombosis in patients with prefibrotic myelofibrosis.
        Blood Cancer J. 2020 Feb 25; 10: 21
        • Tefferi A.
        • Guglielmelli P.
        • Larson D.R.
        • Finke C.
        • Wassie E.A.
        • Pieri L.
        • et al.
        Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis.
        Blood. 2014; 124 (quiz 615): 2507-2513
        • Dunbar A.J.
        • Rampal R.K.
        • Levine R.
        Leukemia secondary to myeloproliferative neoplasms.
        Blood. 2020; 136: 61-70
        • Abdel-Wahab O.
        • Manshouri T.
        • Patel J.
        • Harris K.
        • Yao J.
        • Hedvat C.
        • et al.
        Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias.
        Cancer Res. 2010; 70: 447-452
        • Alvarez-Larran A.
        • Senin A.
        • Fernandez-Rodriguez C.
        • Pereira A.
        • Arellano-Rodrigo E.
        • Gomez M.
        • et al.
        Impact of genotype on leukaemic transformation in polycythaemia vera and essential thrombocythaemia.
        Br J Haematol. 2017; 178: 764-771
        • Luque Paz D.
        • Jouanneau-Courville R.
        • Riou J.
        • Ianotto J.C.
        • Boyer F.
        • Chauveau A.
        • et al.
        Leukemic evolution of polycythemia vera and essential thrombocythemia: genomic profiles predict time to transformation.
        Blood Adv. 2020; 4: 4887-4897
        • Theocharides A.
        • Boissinot M.
        • Girodon F.
        • Garand R.
        • Teo S.S.
        • Lippert E.
        • et al.
        Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation.
        Blood. 2007; 110: 375-379
        • Campbell P.J.
        • Baxter E.J.
        • Beer P.A.
        • Scott L.M.
        • Bench A.J.
        • Huntly B.J.
        • et al.
        Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation.
        Blood. 2006; 108: 3548-3555
        • Guglielmelli P.
        • Lasho T.L.
        • Rotunno G.
        • Score J.
        • Mannarelli C.
        • Pancrazzi A.
        • et al.
        The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients.
        Leukemia. 2014; 28: 1804-1810
        • Vallapureddy R.R.
        • Mudireddy M.
        • Penna D.
        • Lasho T.L.
        • Finke C.M.
        • Hanson C.A.
        • et al.
        Leukemic transformation among 1306 patients with primary myelofibrosis: risk factors and development of a predictive model.
        Blood Cancer J. 2019; 9: 12
        • Cervantes F.
        • Dupriez B.
        • Pereira A.
        • Passamonti F.
        • Reilly J.T.
        • Morra E.
        • et al.
        New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment.
        Blood. 2009 Mar 26; 113: 2895-2901
        • Kroger N.M.
        • Deeg J.H.
        • Olavarria E.
        • Niederwieser D.
        • Bacigalupo A.
        • Barbui T.
        • et al.
        Indication and management of allogeneic stem cell transplantation in primary myelofibrosis: a consensus process by an EBMT/ELN international working group.
        Leukemia. 2015; 29: 2126-2133
        • Guglielmelli P.
        • Rotunno G.
        • Fanelli T.
        • Pacilli A.
        • Brogi G.
        • Calabresi L.
        • et al.
        Validation of the differential prognostic impact of type 1/type 1-like versus type 2/type 2-like CALR mutations in myelofibrosis.
        Blood Cancer J. 2015 Oct; 16: e360
        • Guglielmelli P.
        • Barosi G.
        • Specchia G.
        • Rambaldi A.
        • Lo Coco F.
        • Antonioli E.
        • et al.
        Identification of patients with poorer survival in primary myelofibrosis based on the burden of JAK2V617F mutated allele.
        Blood. 2009; 114: 1477-1483
        • Tefferi A.
        • Lasho T.L.
        • Huang J.
        • Finke C.
        • Mesa R.A.
        • Li C.Y.
        • et al.
        Low JAK2V617F allele burden in primary myelofibrosis, compared to either a higher allele burden or unmutated status, is associated with inferior overall and leukemia-free survival.
        Leukemia. 2008; 22: 756-761
        • Rozovski U.
        • Verstovsek S.
        • Manshouri T.
        • Dembitz V.
        • Bozinovic K.
        • Newberry K.
        • et al.
        An accurate, simple prognostic model consisting of age, JAK2, CALR, and MPL mutation status for patients with primary myelofibrosis.
        Haematologica. 2017; 102: 79-84
        • Guglielmelli P.
        • Lasho T.L.
        • Rotunno G.
        • Mudireddy M.
        • Mannarelli C.
        • Nicolosi M.
        • et al.
        MIPSS70: mutation-enhanced international prognostic score system for transplantation-age patients with primary myelofibrosis.
        J Clin Oncol. 2018; 36: 310-318
        • Passamonti F.
        • Giorgino T.
        • Mora B.
        • Guglielmelli P.
        • Rumi E.
        • Maffioli M.
        • et al.
        A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis.
        Leukemia. 2017; 31: 2726-2731
        • Tefferi A.
        • Guglielmelli P.
        • Lasho T.L.
        • Gangat N.
        • Ketterling R.P.
        • Pardanani A.
        • et al.
        MIPSS70+ Version 2.0: mutation and karyotype-enhanced international prognostic scoring system for primary myelofibrosis.
        J Clin Oncol. 2018; 36: 1769-1770
        • Tefferi A.
        • Guglielmelli P.
        • Nicolosi M.
        • Mannelli F.
        • Mudireddy M.
        • Bartalucci N.
        • et al.
        GIPSS: genetically inspired prognostic scoring system for primary myelofibrosis.
        Leukemia. 2018; 32: 1631-1642
        • How J.
        • Hobbs G.S.
        A practical guide for using myelofibrosis prognostic models in the clinic.
        J Natl Compr Canc Netw. 2020 Sep; 18: 1271-1278
        • Gagelmann N.
        • Ditschkowski M.
        • Bogdanov R.
        • Bredin S.
        • Robin M.
        • Cassinat B.
        • et al.
        Comprehensive clinical-molecular transplant scoring system for myelofibrosis undergoing stem cell transplantation.
        Blood. 2019; 133: 2233-2242
        • Cervantes F.
        How I treat myelofibrosis.
        Blood. 2014; 124: 2635-2642
        • Cervantes F.
        • Alvarez-Larran A.
        • Hernandez-Boluda J.C.
        • Sureda A.
        • Torrebadell M.
        • Montserrat E.
        Erythropoietin treatment of the anaemia of myelofibrosis with myeloid metaplasia: results in 20 patients and review of the literature.
        Br J Haematol. 2004; 127: 399-403
        • Huang J.
        • Tefferi A.
        Erythropoiesis stimulating agents have limited therapeutic activity in transfusion-dependent patients with primary myelofibrosis regardless of serum erythropoietin level.
        Eur J Haematol. 2009; 83: 154-155
        • Hernandez-Boluda J.C.
        • Correa J.G.
        • Garcia-Delgado R.
        • Martinez-Lopez J.
        • Alvarez-Larran A.
        • Fox M.L.
        • et al.
        Predictive factors for anemia response to erythropoiesis-stimulating agents in myelofibrosis.
        Eur J Haematol. 2017; 98: 407-414
        • Penna D.
        • Szuber N.
        • Lasho T.L.
        • Finke C.M.
        • Vallapureddy R.R.
        • Hanson C.A.
        • et al.
        Genetic predictors of response to specific drugs in primary myelofibrosis.
        Blood Cancer J. 2018; 8: 120
        • Ianotto J.C.
        • Boyer-Perrard F.
        • Gyan E.
        • Laribi K.
        • Cony-Makhoul P.
        • Demory J.L.
        • et al.
        Efficacy and safety of pegylated-interferon alpha-2a in myelofibrosis: a study by the FIM and GEM French cooperative groups.
        Br J Haematol. 2013; 162: 783-791
        • Ianotto J.C.
        • Chauveau A.
        • Boyer-Perrard F.
        • Gyan E.
        • Laribi K.
        • Cony-Makhoul P.
        • et al.
        Benefits and pitfalls of pegylated interferon-alpha2a therapy in patients with myeloproliferative neoplasm-associated myelofibrosis: a French Intergroup of Myeloproliferative neoplasms (FIM) study.
        Haematologica. 2018; 103: 438-446
        • Silver R.T.
        • Barel A.C.
        • Lascu E.
        • Ritchie E.K.
        • Roboz G.J.
        • Christos P.J.
        • et al.
        The effect of initial molecular profile on response to recombinant interferon-alpha (rIFNalpha) treatment in early myelofibrosis.
        Cancer. 2017; 123: 2680-2687
        • Castillo-Tokumori F.
        • Talati C.
        • Al Ali N.
        • Sallman D.
        • Yun S.
        • Sweet K.
        • et al.
        Retrospective analysis of the clinical use and benefit of lenalidomide and thalidomide in myelofibrosis.
        Clin Lymphoma Myeloma Leuk. 2020; 20: e956-e960
        • Vannucchi A.M.
        • Kantarjian H.M.
        • Kiladjian J.J.
        • Gotlib J.
        • Cervantes F.
        • Mesa R.A.
        • et al.
        A pooled analysis of overall survival in COMFORT-I and COMFORT-II, 2 randomized phase III trials of ruxolitinib for the treatment of myelofibrosis.
        Haematologica. 2015; 100: 1139-1145
        • Deininger M.
        • Radich J.
        • Burn T.C.
        • Huber R.
        • Paranagama D.
        • Verstovsek S.
        The effect of long-term ruxolitinib treatment on JAK2p.V617F allele burden in patients with myelofibrosis.
        Blood. 2015; 126: 1551-1554
        • Ross D.M.
        • Babon J.J.
        • Tvorogov D.
        • Thomas D.
        Persistence of myelofibrosis treated with ruxolitinib: biology and clinical implications.
        Haematologica. 2021; 106: 1244-1253
        • Verstovsek S.
        • Mesa R.A.
        • Gotlib J.
        • Levy R.S.
        • Gupta V.
        • DiPersio J.F.
        • et al.
        A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis.
        N Engl J Med. 2012; 366: 799-807
        • Cervantes F.
        • Vannucchi A.M.
        • Kiladjian J.J.
        • Al-Ali H.K.
        • Sirulnik A.
        • Stalbovskaya V.
        • et al.
        Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis.
        Blood. 2013; 122: 4047-4053
        • Harrison C.N.
        • Vannucchi A.M.
        • Kiladjian J.J.
        • Al-Ali H.K.
        • Gisslinger H.
        • Knoops L.
        • et al.
        Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis.
        Leukemia. 2016; 30: 1701-1707
        • Guglielmelli P.
        • Biamonte F.
        • Rotunno G.
        • Artusi V.
        • Artuso L.
        • Bernardis I.
        • et al.
        Impact of mutational status on outcomes in myelofibrosis patients treated with ruxolitinib in the COMFORT-II study.
        Blood. 2014; 123: 2157-2160
        • Patel K.P.
        • Newberry K.J.
        • Luthra R.
        • Jabbour E.
        • Pierce S.
        • Cortes J.
        • et al.
        Correlation of mutation profile and response in patients with myelofibrosis treated with ruxolitinib.
        Blood. 2015; 126: 790-797
        • Koppikar P.
        • Bhagwat N.
        • Kilpivaara O.
        • Manshouri T.
        • Adli M.
        • Hricik T.
        • et al.
        Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy.
        Nature. 2012; 489: 155-159
        • Tvorogov D.
        • Thompson-Peach C.A.L.
        • Fosselteder J.
        • Dottore M.
        • Stomski F.
        • Onnesha S.A.
        • et al.
        Targeting human CALR-mutated MPN progenitors with a neoepitope-directed monoclonal antibody.
        EMBO Rep. 2022; 23: e52904
        • Handlos Grauslund J.
        • Holmstrom M.O.
        • Jorgensen N.G.
        • Klausen U.
        • Weis-Banke S.E.
        • El Fassi D.
        • et al.
        Therapeutic cancer vaccination with a peptide derived from the calreticulin exon 9 mutations induces strong cellular immune responses in patients With CALR-mutant chronic myeloproliferative neoplasms.
        Front Oncol. 2021; 11: 637420
        • Tefferi A.
        • Jimma T.
        • Sulai N.H.
        • Lasho T.L.
        • Finke C.M.
        • Knudson R.A.
        • et al.
        IDH mutations in primary myelofibrosis predict leukemic transformation and shortened survival: clinical evidence for leukemogenic collaboration with JAK2V617F.
        Leukemia. 2012; 26: 475-480
        • Chifotides H.T.
        • Masarova L.
        • Alfayez M.
        • Daver N.
        • Alvarado Y.
        • Jabbour E.
        • et al.
        Outcome of patients with IDH1/2-mutated post-myeloproliferative neoplasm AML in the era of IDH inhibitors.
        Blood Adv. 2020; 4: 5336-5342
        • Tefferi A.
        • Mudireddy M.
        • Mannelli F.
        • Begna K.H.
        • Patnaik M.M.
        • Hanson C.A.
        • et al.
        Blast phase myeloproliferative neoplasm: mayo-AGIMM study of 410 patients from two separate cohorts.
        Leukemia. 2018; 32: 1200-1210
        • Tefferi A.
        • Lasho T.L.
        • Begna K.H.
        • Patnaik M.M.
        • Zblewski D.L.
        • Finke C.M.
        • et al.
        A pilot study of the telomerase inhibitor imetelstat for myelofibrosis.
        N Engl J Med. 2015; 373: 908-919
        • Kroger N.
        • Panagiota V.
        • Badbaran A.
        • Zabelina T.
        • Triviai I.
        • Araujo Cruz M.M.
        • et al.
        Impact of molecular genetics on outcome in myelofibrosis patients after allogeneic stem cell transplantation.
        Biol Blood Marrow Transplant. 2017; 23: 1095-1101
        • Hernandez-Boluda J.C.
        • Pereira A.
        • Alvarez-Larran A.
        • Martin A.A.
        • Benzaquen A.
        • Aguirre L.
        • et al.
        Predicting survival after allogeneic hematopoietic cell transplantation in myelofibrosis: performance of the myelofibrosis transplant scoring system (MTSS) and development of a new prognostic model.
        Biol Blood Marrow Transplant. 2020; 26: 2237-2244
      2. Ali H, Aldoss I, Yang D, Mokhtari S, Khaled S, Aribi A, et al. MIPSS70+ v2.0 predicts long-term survival in myelofibrosis after allogeneic HCT with the Flu/Mel conditioning regimen. Blood Adv 2019;3(1):83-95.

        • Tamari R.
        • Rapaport F.
        • Zhang N.
        • McNamara C.
        • Kuykendall A.
        • Sallman D.A.
        • et al.
        Impact of high-molecular-risk mutations on transplantation outcomes in patients with myelofibrosis.
        Biol Blood Marrow Transplant. 2019; 25: 1142-1151
        • Gupta V.
        • Kennedy J.A.
        • Capo-Chichi J.M.
        • Kim S.
        • Hu Z.H.
        • Alyea E.P.
        • et al.
        Genetic factors rather than blast reduction determine outcomes of allogeneic HCT in BCR-ABL-negative MPN in blast phase.
        Blood Adv. 2020; 4: 5562-5573
        • McLornan D.P.
        • Hernandez-Boluda J.C.
        • Czerw T.
        • Cross N.
        • Joachim Deeg H.
        • Ditschkowski M.
        • et al.
        Allogeneic haematopoietic cell transplantation for myelofibrosis: proposed definitions and management strategies for graft failure, poor graft function and relapse: best practice recommendations of the EBMT Chronic Malignancies Working Party.
        Leukemia. 2021; 35: 2445-2459
        • Lange T.
        • Edelmann A.
        • Siebolts U.
        • Krahl R.
        • Nehring C.
        • Jakel N.
        • et al.
        JAK2 p. V617F allele burden in myeloproliferative neoplasms one month after allogeneic stem cell transplantation significantly predicts outcome and risk of relapse.
        Haematologica. 2013; 98: 722-728
        • Wolschke C.
        • Badbaran A.
        • Zabelina T.
        • Christopeit M.
        • Ayuk F.
        • Triviai I.
        • et al.
        Impact of molecular residual disease post allografting in myelofibrosis patients.
        Bone Marrow Transplant. 2017; 52: 1526-1529
        • Kroger N.
        • Alchalby H.
        • Klyuchnikov E.
        • Badbaran A.
        • Hildebrandt Y.
        • Ayuk F.
        • et al.
        JAK2-V617F-triggered preemptive and salvage adoptive immunotherapy with donor-lymphocyte infusion in patients with myelofibrosis after allogeneic stem cell transplantation.
        Blood. 2009; 113: 1866-1868
        • Mannina D.
        • Badbaran A.
        • Wolschke C.
        • Klyuchnikov E.
        • Christopeit M.
        • Fehse B.
        • et al.
        Digital-droplet PCR assays for IDH, DNMT3A and driver mutations to monitor after allogeneic stem cell transplantation minimal residual disease of myelofibrosis.
        Bone Marrow Transplant. 2022; 57: 510-512
        • Ortmann C.A.
        • Kent D.G.
        • Nangalia J.
        • Silber Y.
        • Wedge D.C.
        • Grinfeld J.
        • et al.
        Effect of mutation order on myeloproliferative neoplasms.
        N Engl J Med. 2015; 372: 601-612
        • Nangalia J.
        • Nice F.L.
        • Wedge D.C.
        • Godfrey A.L.
        • Grinfeld J.
        • Thakker C.
        • et al.
        DNMT3A mutations occur early or late in patients with myeloproliferative neoplasms and mutation order influences phenotype.
        Haematologica. 2015; 100: e438-e442
        • Guo Y.
        • Zhou Y.
        • Yamatomo S.
        • Yang H.
        • Zhang P.
        • Chen S.
        • et al.
        ASXL1 alteration cooperates with JAK2V617F to accelerate myelofibrosis.
        Leukemia. 2019; 33: 1287-1291
        • Lasho T.L.
        • Mudireddy M.
        • Finke C.M.
        • Hanson C.A.
        • Ketterling R.P.
        • Szuber N.
        • et al.
        Targeted next-generation sequencing in blast phase myeloproliferative neoplasms.
        Blood Adv. 2018; 2: 370-380
        • Guglielmelli P.
        • Pacilli A.
        • Coltro G.
        • Mannelli F.
        • Mannelli L.
        • Contini E.
        • et al.
        Characteristics and clinical correlates of NFE2 mutations in chronic Myeloproliferative neoplasms.
        Am J Hematol. 2020 Jan; 95: E23-E26
        • Marcault C.
        • Zhao L.P.
        • Maslah N.
        • Verger E.
        • Daltro de Oliveira R.
        • Soret-Dulphy J.
        • et al.
        Impact of NFE2 mutations on AML transformation and overall survival in patients with myeloproliferative neoplasms.
        Blood. 2021; 138: 2142-2148
        • Lasho T.L.
        • Finke C.M.
        • Hanson C.A.
        • Jimma T.
        • Knudson R.A.
        • Ketterling R.P.
        • et al.
        SF3B1 mutations in primary myelofibrosis: clinical, histopathology and genetic correlates among 155 patients.
        Leukemia. 2012; 26: 1135-1137
        • Rumi E.
        • Harutyunyan A.S.
        • Pietra D.
        • Feenstra J.D.
        • Cavalloni C.
        • Roncoroni E.
        • et al.
        LNK mutations in familial myeloproliferative neoplasms.
        Blood. 2016; 128: 144-145
        • Santos F.P.S.
        • Getta B.
        • Masarova L.
        • Famulare C.
        • Schulman J.
        • Datoguia T.S.
        • et al.
        Prognostic impact of RAS-pathway mutations in patients with myelofibrosis.
        Leukemia. 2020; 34: 799-810
        • Samuelson Bannow B.T.
        • Salit R.B.
        • Storer B.E.
        • Stevens E.A.
        • Wu D.
        • Yeung C.
        • et al.
        Hematopoietic cell transplantation for myelofibrosis: the dynamic international prognostic scoring system plus risk predicts post-transplant outcomes.
        Biol Blood Marrow Transplant. 2018; 24: 386-392
        • Lwin Y.
        • Kennedy G.
        • Gottlieb D.
        • Kwan J.
        • Ritchie D.
        • Szer J.
        • et al.
        Australasian trends in allogeneic stem cell transplantation for myelofibrosis in the molecular era: a retrospective analysis from the australasian bone marrow transplant recipient registry.
        Biol Blood Marrow Transplant. 2020; 26: 2252-2261