Advertisement

Emerging antibody-based therapies for the treatment of acute myeloid leukemia

      Highlights

      • Antibody-based therapeutics have demonstrated substantial activity in AML.
      • Combinations of antibodies with novel agents will hopefully be even more effective.
      • Checkpoint inhibitors, bispecifics and immunocytokines open up a new avenue for the immunotherapy of AML.

      Abstract

      The development of antibody-based therapeutics for patients with acute myeloid leukemia (AML) has long been hampered due to the shared expression of antigens on leukemic blasts and hematopoietic stem and progenitor cells (HSPC). Nevertheless, the first antibody-drug conjugate has been approved for the treatment of AML in the recent years. In addition, multiple antibody-based therapeutics including antibody-drug conjugates, bispecific antibodies and immunocytokines are currently being developed in clinical trials with some of them demonstrating encouraging results alone and/or in combination with current standard therapies. In this review we discuss current concepts of antibody-based therapies and results from emerging antibody-based therapeutics for the treatment of AML.

      Keywords

      To read this article in full you will need to make a payment
      ESMO Member Login
      Login with your ESMO username and password.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Short N.J.
        • Rytting M.E.
        • Cortes J.E.
        Acute myeloid leukaemia.
        The Lancet. 2018; 392: 593-606
        • Bullinger L.
        • Döhner K.
        • Döhner H.
        Genomics of Acute Myeloid Leukemia Diagnosis and Pathways.
        J Clin Oncol. 2017; 35: 934-946
        • Arber D.A.
        • Orazi A.
        • Hasserjian R.
        • Thiele J.
        • Borowitz M.J.
        • Le Beau M.M.
        • et al.
        The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia.
        Blood. 2016; 127: 2391-2405
        • Döhner H.
        • Estey E.
        • Grimwade D.
        • Amadori S.
        • Appelbaum F.R.
        • Büchner T.
        • et al.
        Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel.
        Blood. 2017; 129: 424-447
        • Angenendt L.
        • Röllig C.
        • Montesinos P.
        • Martínez-Cuadrón D.
        • Barragan E.
        • García R.
        • et al.
        Chromosomal Abnormalities and Prognosis in NPM1-Mutated Acute Myeloid Leukemia: A Pooled Analysis of Individual Patient Data From Nine International Cohorts.
        J Clin Oncol. 2019; 37: 2632-2642
        • Döhner H.
        • Wei A.H.
        • Löwenberg B.
        Towards precision medicine for AML.
        Nat Rev Clin Oncol. 2021; 18: 577-590
        • DiNardo C.D.
        • Jonas B.A.
        • Pullarkat V.
        • Thirman M.J.
        • Garcia J.S.
        • Wei A.H.
        • et al.
        Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia.
        N Engl J Med. 2020; 383: 617-629
        • Jabbour E.
        • Paul S.
        • Kantarjian H.
        The clinical development of antibody-drug conjugates - lessons from leukaemia.
        Nat Rev Clin Oncol. 2021; 18: 418-433
        • Angenendt L.
        • Reuter S.
        • Kentrup D.
        • Benk A.S.
        • Neumann F.
        • Hüve J.
        • et al.
        An atlas of bloodstream-accessible bone marrow proteins for site-directed therapy of acute myeloid leukemia.
        Leukemia. 2018; 32: 510-519
        • Smaglo B.G.
        • Aldeghaither D.
        • Weiner L.M.
        The development of immunoconjugates for targeted cancer therapy.
        Nat Rev Clin Oncol. 2014; 11: 637-648
        • Scott A.M.
        • Wolchok J.D.
        • Old L.J.
        Antibody therapy of cancer.
        Nat Rev Cancer. 2012; 12: 278-287
        • Larrue C.
        • Guiraud N.
        • Mouchel P.-L.
        • Dubois M.
        • Farge T.
        • Gotanègre M.
        • et al.
        Adrenomedullin-CALCRL axis controls relapse-initiating drug tolerant acute myeloid leukemia cells.
        Nat Commun. 2021; 12https://doi.org/10.1038/s41467-020-20717-9
        • Duy C.
        • Li M.
        • Teater M.
        • Meydan C.
        • Garrett-Bakelman F.E.
        • Lee T.C.
        • et al.
        Chemotherapy Induces Senescence-Like Resilient Cells Capable of Initiating AML Recurrence.
        Cancer Discov. 2021; 11: 1542-1561
        • Boyd A.L.
        • Aslostovar L.
        • Reid J.
        • Ye W.
        • Tanasijevic B.
        • Porras D.P.
        • et al.
        Identification of Chemotherapy-Induced Leukemic-Regenerating Cells Reveals a Transient Vulnerability of Human AML Recurrence.
        Cancer Cell. 2018; 34: 483-498.e5
        • Shlush L.I.
        • Mitchell A.
        • Heisler L.
        • Abelson S.
        • Ng S.W.K.
        • Trotman-Grant A.
        • et al.
        Tracing the origins of relapse in acute myeloid leukaemia to stem cells.
        Nature. 2017; 547: 104-108
        • Farge T.
        • Saland E.
        • de Toni F.
        • Aroua N.
        • Hosseini M.
        • Perry R.
        • et al.
        Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism.
        Cancer Discov. 2017; 7: 716-735
        • Angenendt L.
        • Wöste M.
        • Mikesch J.-H.
        • Arteaga M.F.
        • Angenendt A.
        • Sandmann S.
        • et al.
        Calcitonin receptor-like (CALCRL) is a marker of stemness and an independent predictor of outcome in pediatric AML.
        Blood Adv. 2021; 5: 4413-4421
        • Angenendt L.
        • Bormann E.
        • Pabst C.
        • Alla V.
        • Görlich D.
        • Braun L.
        • et al.
        The neuropeptide receptor calcitonin receptor-like (CALCRL) is a potential therapeutic target in acute myeloid leukemia.
        Leukemia. 2019; 33: 2830-2841
        • Neri D.
        • Bicknell R.
        Tumour vascular targeting.
        Nat Rev Cancer. 2005; 5: 436-446
        • Schliemann C.
        • Neri D.
        Antibody-based vascular tumor targeting.
        Recent Results Cancer Res. 2010; 180: 201-216
        • Dennis M.S.
        • Jin H.
        • Dugger D.
        • Yang R.
        • McFarland L.
        • Ogasawara A.
        • et al.
        Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent.
        Cancer Res. 2007; 67: 254-261
        • Jain R.K.
        Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors.
        Cancer Res. 1990; 50: 814s-819s
        • Kiefer J.D.
        • Neri D.
        Immunocytokines and bispecific antibodies: two complementary strategies for the selective activation of immune cells at the tumor site.
        Immunol Rev. 2016; 270: 178-192
        • Neri D.
        Antibody-Cytokine Fusions: Versatile Products for the Modulation of Anticancer Immunity.
        Cancer Immunol Res. 2019; 7: 348-354
        • Daver N.
        • Alotaibi A.S.
        • Bücklein V.
        • Subklewe M.
        T-cell-based immunotherapy of acute myeloid leukemia: current concepts and future developments.
        Leukemia. 2021; 35: 1843-1863
        • Perna F.
        • Berman S.H.
        • Soni R.K.
        • Mansilla-Soto J.
        • Eyquem J.
        • Hamieh M.
        • et al.
        Integrating Proteomics and Transcriptomics for Systematic Combinatorial Chimeric Antigen Receptor Therapy of AML.
        Cancer Cell. 2017; 32: 506-519.e5
        • Willier S.
        • Rothämel P.
        • Hastreiter M.
        • Wilhelm J.
        • Stenger D.
        • Blaeschke F.
        • et al.
        CLEC12A and CD33 coexpression as a preferential target for pediatric AML combinatorial immunotherapy.
        Blood. 2021; 137: 1037-1049
        • Kim M.Y.
        • Yu K.-R.
        • Kenderian S.S.
        • Ruella M.
        • Chen S.
        • Shin T.-H.
        • et al.
        Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia.
        Cell. 2018; 173: 1439-1453.e19
        • Borot F.
        • Wang H.
        • Ma Y.
        • Jafarov T.
        • Raza A.
        • Ali A.M.
        • et al.
        Gene-edited stem cells enable CD33-directed immune therapy for myeloid malignancies.
        Proc Natl Acad Sci U S A. 2019; 116: 11978-11987
        • He X.
        • Feng Z.
        • Ma J.
        • Ling S.
        • Cao Y.
        • Gurung B.
        • et al.
        Bispecific and split CAR T cells targeting CD13 and TIM3 eradicate acute myeloid leukemia.
        Blood. 2020; 135: 713-723
        • Van De Vyver A.J.
        • Marrer-Berger E.
        • Wang K.
        • Lehr T.
        • Walz A.C.
        Cytokine Release Syndrome By T-cell-Redirecting Therapies: Can We Predict and Modulate Patient Risk?.
        Clin Cancer Res. 2021; 27: 6083-6094
        • Morris E.C.
        • Neelapu S.S.
        • Giavridis T.
        • Sadelain M.
        Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy.
        Nat Rev Immunol. 2022; 22: 85-96
        • Feldman E.J.
        • Brandwein J.
        • Stone R.
        • Kalaycio M.
        • Moore J.
        • O'Connor J.
        • et al.
        Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia.
        J Clin Oncol. 2005; 23: 4110-4116
        • Abedin S.
        • Guru Murthy G.S.
        • Hamadani M.
        • Michaelis L.C.
        • Runaas L.
        • Carlson K.
        • et al.
        Lintuzumab-Ac225 in Combination with CLAG-M Yields High MRD (-) Responses in R/R AML with Adverse Features: Interim Results of a Phase I Study.
        Blood. 2021; 138: 3414
        • Schiller G.J.
        • Finn L.
        • Roboz G.J.
        • Orozco J.J.
        • Lin T.
        • Chen M.M.
        • et al.
        Early Clinical Evaluation of Potential Synergy of Targeted Radiotherapy with Lintuzumab-Ac225 and Venetoclax in Relapsed/Refractory AML.
        Blood. 2021; 138: 3412
        • Bross P.F.
        • Beitz J.
        • Chen G.
        • Chen X.H.
        • Duffy E.
        • Kieffer L.
        • et al.
        Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia.
        Clin Cancer Res. 2001; 7: 1490-1496
        • Petersdorf S.H.
        • Kopecky K.J.
        • Slovak M.
        • Willman C.
        • Nevill T.
        • Brandwein J.
        • et al.
        A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia.
        Blood. 2013; 121: 4854-4860
        • Hills R.K.
        • Castaigne S.
        • Appelbaum F.R.
        • Delaunay J.
        • Petersdorf S.
        • Othus M.
        • et al.
        Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials.
        Lancet Oncol. 2014; 15: 986-996
        • Castaigne S.
        • Pautas C.
        • Terré C.
        • Raffoux E.
        • Bordessoule D.
        • Bastie J.-N.
        • et al.
        Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study.
        The Lancet. 2012; 379: 1508-1516
        • Burnett A.K.
        • Hills R.K.
        • Milligan D.
        • Kjeldsen L.
        • Kell J.
        • Russell N.H.
        • et al.
        Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial.
        J Clin Oncol. 2011; 29: 369
        • Schlenk R.F.
        • Paschka P.
        • Krzykalla J.
        • Weber D.
        • Kapp-Schwoerer S.
        • Gaidzik V.I.
        • et al.
        Gemtuzumab Ozogamicin in NPM1-Mutated Acute Myeloid Leukemia: Early Results From the Prospective Randomized AMLSG 09–09 Phase III Study.
        J Clin Oncol. 2020; 38: 623-632
        • Kapp-Schwoerer S.
        • Weber D.
        • Corbacioglu A.
        • Gaidzik V.I.
        • Paschka P.
        • Krönke J.
        • et al.
        Impact of gemtuzumab ozogamicin on MRD and relapse risk in patients with NPM1-mutated AML: results from the AMLSG 09–09 trial.
        Blood. 2020; 136: 3041-3050
        • Stein E.M.
        • Walter R.B.
        • Erba H.P.
        • Fathi A.T.
        • Advani A.S.
        • Lancet J.E.
        • et al.
        A phase 1 trial of vadastuximab talirine as monotherapy in patients with CD33-positive acute myeloid leukemia.
        Blood. 2018; 131: 387-396
        • Subklewe M.
        • Stein A.
        • Walter R.B.
        • Bhatia R.
        • Wei A.H.
        • Ritchie D.
        • et al.
        Preliminary Results from a Phase 1 First-in-Human Study of AMG 673, a Novel Half-Life Extended (HLE) Anti-CD33/CD3 BiTE® (Bispecific T-Cell Engager) in Patients with Relapsed/Refractory (R/R) Acute Myeloid Leukemia (AML).
        Blood. 2019; 134: 833
        • Friedrich M.
        • Henn A.
        • Raum T.
        • Bajtus M.
        • Matthes K.
        • Hendrich L.
        • et al.
        Preclinical characterization of AMG 330, a CD3/CD33-bispecific T-cell-engaging antibody with potential for treatment of acute myelogenous leukemia.
        Mol Cancer Ther. 2014; 13: 1549-1557
        • Ravandi F.
        • Walter R.B.
        • Subklewe M.
        • Buecklein V.
        • Jongen-Lavrencic M.
        • Paschka P.
        • et al.
        Updated results from phase I dose-escalation study of AMG 330, a bispecific T-cell engager molecule, in patients with relapsed/refractory acute myeloid leukemia (R/R AML).
        J Clin Oncol. 2020; 38: 7508
        • Kovtun Y.
        • Noordhuis P.
        • Whiteman K.R.
        • Watkins K.
        • Jones G.E.
        • Harvey L.
        • et al.
        IMGN779, a Novel CD33-Targeting Antibody-Drug Conjugate with DNA-Alkylating Activity, Exhibits Potent Antitumor Activity in Models of AML.
        Mol Cancer Ther. 2018; 17: 1271-1279
        • Cortes J.E.
        • DeAngelo D.J.
        • Erba H.P.
        • Traer E.
        • Papadantonakis N.
        • Arana-Yi C.
        • et al.
        Maturing Clinical Profile of IMGN779, a Next-Generation CD33-Targeting Antibody-Drug Conjugate, in Patients with Relapsed or Refractory Acute Myeloid Leukemia.
        Blood. 2018; 132: 26
        • Vasu S.
        • He S.
        • Cheney C.
        • Gopalakrishnan B.
        • Mani R.
        • Lozanski G.
        • et al.
        Decitabine enhances anti-CD33 monoclonal antibody BI 836858-mediated natural killer ADCC against AML blasts.
        Blood. 2016; 127: 2879-2889
        • Blum W.
        • Ruppert A.S.
        • Mims A.S.
        • Stein E.M.
        • Duong V.H.
        • Odenike O.
        • et al.
        Phase 1b Dose Escalation Study of BI 836858 and Azacitidine in Previously Untreated AML: Results from Beat AML S2.
        Blood. 2018; 132: 4053
        • Vasu S.
        • Altman J.K.
        • Uy G.L.
        • Tallman M.S.
        • Gojo I.
        • Lozanski G.
        • et al.
        A phase I study of the fully human, fragment crystallizable-engineered, anti-CD-33 monoclonal antibody BI 836858 in patients with previously-treated acute myeloid leukemia.
        Haematologica. 2021; https://doi.org/10.3324/haematol.2020.274118
        • Liu F.
        • Cao Y.
        • Pinz K.
        • Ma Y.u.
        • Wada M.
        • Chen K.
        • et al.
        First-in-Human CLL1-CD33 Compound CAR T Cell Therapy Induces Complete Remission in Patients with Refractory Acute Myeloid Leukemia: Update on Phase 1 Clinical Trial.
        Blood. 2018; 132: 901
        • Testa U.
        • Riccioni R.
        • Militi S.
        • Coccia E.
        • Stellacci E.
        • Samoggia P.
        • et al.
        Elevated expression of IL-3Ralpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis.
        Blood. 2002; 100: 2980-2988
        • Jordan C.T.
        • Upchurch D.
        • Szilvassy S.J.
        • Guzman M.L.
        • Howard D.S.
        • Pettigrew A.L.
        • et al.
        The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells.
        Leukemia. 2000; 14: 1777-1784
        • Chichili G.R.
        • Huang L.
        • Li H.
        • Burke S.
        • He L.
        • Tang Q.
        • et al.
        A CD3xCD123 bispecific DART for redirecting host T cells to myelogenous leukemia: preclinical activity and safety in nonhuman primates.
        Sci Transl Med. 2015; 7https://doi.org/10.1126/scitranslmed.aaa5693
        • Uy G.L.
        • Aldoss I.
        • Foster M.C.
        • Sayre P.H.
        • Wieduwilt M.J.
        • Advani A.S.
        • et al.
        Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia.
        Blood. 2021; 137: 751-762
        • Kovtun Y.
        • Jones G.E.
        • Adams S.
        • Harvey L.
        • Audette C.A.
        • Wilhelm A.
        • et al.
        A CD123-targeting antibody-drug conjugate, IMGN632, designed to eradicate AML while sparing normal bone marrow cells.
        Blood Adv. 2018; 2: 848-858
        • Daver N.G.
        • Montesinos P.
        • DeAngelo D.J.
        • Wang E.S.
        • Papadantonakis N.
        • Deconinck E.
        • et al.
        Clinical Profile of IMGN632, a Novel CD123-Targeting Antibody-Drug Conjugate (ADC), in Patients with Relapsed/Refractory (R/R) Acute Myeloid Leukemia (AML) or Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN).
        Blood. 2019; 134: 734
        • Daver N.
        • Aribi A.
        • Montesinos P.
        • Roboz G.J.
        • Wang E.S.
        • Walter R.B.
        • et al.
        Safety and Efficacy from a Phase 1b/2 Study of IMGN632 in Combination with Azacitidine and Venetoclax for Patients with CD123-Positive Acute Myeloid Leukemia.
        Blood. 2021; 138: 372
        • Montesinos P.
        • Roboz G.J.
        • Bulabois C.-E.
        • Subklewe M.
        • Platzbecker U.
        • Ofran Y.
        • et al.
        Safety and efficacy of talacotuzumab plus decitabine or decitabine alone in patients with acute myeloid leukemia not eligible for chemotherapy: results from a multicenter, randomized, phase 2/3 study.
        Leukemia. 2021; 35: 62-74
        • Black J.H.
        • McCubrey J.A.
        • Willingham M.C.
        • Ramage J.
        • Hogge D.E.
        • Frankel A.E.
        Diphtheria toxin-interleukin-3 fusion protein (DT(388)IL3) prolongs disease-free survival of leukemic immunocompromised mice.
        Leukemia. 2003; 17: 155-159
        • Frankel A.
        • Liu J.-S.
        • Rizzieri D.
        • Hogge D.
        Phase I clinical study of diphtheria toxin-interleukin 3 fusion protein in patients with acute myeloid leukemia and myelodysplasia.
        Leuk Lymphoma. 2008; 49: 543-553
        • Lane A.A.
        • Sweet K.L.
        • Wang E.S.
        • Donnellan W.B.
        • Walter R.B.
        • Stein A.S.
        • et al.
        Results from Ongoing Phase 2 Trial of SL-401 As Consolidation Therapy in Patients with Acute Myeloid Leukemia (AML) in Remission with High Relapse Risk Including Minimal Residual Disease (MRD).
        Blood. 2016; 128: 215
        • Ravandi F.
        • Bashey A.
        • Foran J.M.
        • Stock W.
        • Mawad R.
        • Blum W.
        • et al.
        Complete Responses in Relapsed/Refractory Acute Myeloid Leukemia (AML) Patients on a Weekly Dosing Schedule of XmAb14045, a CD123 x CD3 T Cell-Engaging Bispecific Antibody: Initial Results of a Phase 1 Study.
        Blood. 2018; 132: 763
        • Budde L.
        • Song J.Y.
        • Kim Y.
        • Blanchard S.
        • Wagner J.
        • Stein A.S.
        • et al.
        Remissions of Acute Myeloid Leukemia and Blastic Plasmacytoid Dendritic Cell Neoplasm Following Treatment with CD123-Specific CAR T Cells: A First-in-Human Clinical Trial.
        Blood. 2017; 130: 811
        • Majeti R.
        • Chao M.P.
        • Alizadeh A.A.
        • Pang W.W.
        • Jaiswal S.
        • Gibbs K.D.
        • et al.
        CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells.
        Cell. 2009; 138: 286-299
        • Jaiswal S.
        • Jamieson C.H.M.
        • Pang W.W.
        • Park C.Y.
        • Chao M.P.
        • Majeti R.
        • et al.
        CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis.
        Cell. 2009; 138: 271-285
        • Sallman D.A.
        • Al Malki M.
        • Asch A.S.
        • Lee D.J.
        • Kambhampati S.
        • Donnellan W.B.
        • et al.
        Tolerability and efficacy of the first-in-class anti-CD47 antibody magrolimab combined with azacitidine in MDS and AML patients: Phase Ib results.
        J Clin Oncol. 2020; 38: 7507
        • Riether C.
        • Schürch C.M.
        • Bührer E.D.
        • Hinterbrandner M.
        • Huguenin A.-L.
        • Hoepner S.
        • et al.
        CD70/CD27 signaling promotes blast stemness and is a viable therapeutic target in acute myeloid leukemia.
        J Exp Med. 2017; 214: 359-380
        • Sauer T.
        • Parikh K.
        • Sharma S.
        • Omer B.
        • Sedloev D.
        • Chen Q.
        • et al.
        CD70-specific CAR T cells have potent activity against acute myeloid leukemia without HSC toxicity.
        Blood. 2021; 138: 318-330
        • Riether C.
        • Pabst T.
        • Höpner S.
        • Bacher U.
        • Hinterbrandner M.
        • Banz Y.
        • et al.
        Targeting CD70 with cusatuzumab eliminates acute myeloid leukemia stem cells in patients treated with hypomethylating agents.
        Nat Med. 2020; 26: 1459-1467
        • Roboz G.J.
        • Pabst T.
        • Aribi A.
        • Brandwein J.M.
        • Döhner H.
        • Fiedler W.
        • et al.
        Safety and Efficacy of Cusatuzumab in Combination with Venetoclax and Azacitidine (CVA) in Patients with Previously Untreated Acute Myeloid Leukemia (AML) Who Are Not Eligible for Intensive Chemotherapy; An Open-Label, Multicenter, Phase 1b Study.
        Blood. 2021; 138: 369
        • van Rhenen A.
        • van Dongen G.A.M.S.
        • Kelder A.
        • Rombouts E.J.
        • Feller N.
        • Moshaver B.
        • et al.
        The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells.
        Blood. 2007; 110: 2659-2666
        • Bakker A.B.H.
        • van den Oudenrijn S.
        • Bakker A.Q.
        • Feller N.
        • van Meijer M.
        • Bia J.A.
        • et al.
        C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia.
        Cancer Res. 2004; 64: 8443-8450
        • Zhao X.
        • Singh S.
        • Pardoux C.
        • Zhao J.
        • Hsi E.D.
        • Abo A.
        • et al.
        Targeting C-type lectin-like molecule-1 for antibody-mediated immunotherapy in acute myeloid leukemia.
        Haematologica. 2010; 95: 71-78
        • Jiang Y.-P.
        • Liu B.Y.
        • Zheng Q.
        • Panuganti S.
        • Chen R.
        • Zhu J.
        • et al.
        CLT030, a leukemic stem cell–targeting CLL1 antibody-drug conjugate for treatment of acute myeloid leukemia.
        Blood Adv. 2018; 2: 1738-1749
        • Leong S.R.
        • Sukumaran S.
        • Hristopoulos M.
        • Totpal K.
        • Stainton S.
        • Lu E.
        • et al.
        An anti-CD3/anti–CLL-1 bispecific antibody for the treatment of acute myeloid leukemia.
        Blood. 2017; 129: 609-618
        • Legras S.
        • Günthert U.
        • Stauder R.
        • Curt F.
        • Oliferenko S.
        • Kluin-Nelemans H.C.
        • et al.
        A strong expression of CD44-6v correlates with shorter survival of patients with acute myeloid leukemia.
        Blood. 1998; 91: 3401-3413
        • Jin L.
        • Hope K.J.
        • Zhai Q.
        • Smadja-Joffe F.
        • Dick J.E.
        Targeting of CD44 eradicates human acute myeloid leukemic stem cells.
        Nat Med. 2006; 12: 1167-1174
        • Casucci M.
        • Nicolis di Robilant B.
        • Falcone L.
        • Camisa B.
        • Norelli M.
        • Genovese P.
        • et al.
        CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma.
        Blood. 2013; 122: 3461-3472
        • Wolf Y.
        • Anderson A.C.
        • Kuchroo V.K.
        TIM3 comes of age as an inhibitory receptor.
        Nat Rev Immunol. 2020; 20: 173-185
        • Jan M.
        • Chao M.P.
        • Cha A.C.
        • Alizadeh A.A.
        • Gentles A.J.
        • Weissman I.L.
        • et al.
        Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker.
        Proc Natl Acad Sci USA. 2011; 108: 5009-5014
        • Kikushige Y.
        • Shima T.
        • Takayanagi S.-I.
        • Urata S.
        • Miyamoto T.
        • Iwasaki H.
        • et al.
        TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells.
        Cell Stem Cell. 2010; 7: 708-717
        • Wei A.H.
        • Esteve J.
        • Porkka K.
        • Knapper S.
        • Vey N.
        • Scholl S.
        • et al.
        Sabatolimab (MBG453) Dose Selection and Dose-Response Analysis in Myelodysplastic Syndrome (MDS)/Acute Myeloid Leukemia (AML): Population Pharmacokinetics (PK) Modeling and Evaluation of Clinical Efficacy/Safety By Dose.
        Blood. 2020; 136: 40-42
        • Yeung Y.A.
        • Krishnamoorthy V.
        • Dettling D.
        • Sommer C.
        • Poulsen K.
        • Ni I.
        • et al.
        An Optimized Full-Length FLT3/CD3 Bispecific Antibody Demonstrates Potent Anti-leukemia Activity and Reversible Hematological Toxicity.
        Mol Ther. 2020; 28: 889-900
        • Piloto O.
        • Levis M.
        • Huso D.
        • Li Y.
        • Li H.
        • Wang M.-N.
        • et al.
        Inhibitory anti-FLT3 antibodies are capable of mediating antibody-dependent cell-mediated cytotoxicity and reducing engraftment of acute myelogenous leukemia blasts in nonobese diabetic/severe combined immunodeficient mice.
        Cancer Res. 2005; 65: 1514-1522
        • Sanford D.
        • Blum W.G.
        • Ravandi F.
        • Klisovic R.B.
        • Borthakur G.
        • Walker A.R.
        • et al.
        Efficacy and safety of an anti-FLT3 antibody (LY3012218) in patients with relapsed acute myeloid leukemia.
        J Clin Oncol. 2015; 33: 7059
        • Märklin M.
        • Hagelstein I.
        • Koerner S.P.
        • Rothfelder K.
        • Pfluegler M.S.
        • Schumacher A.
        • et al.
        Bispecific NKG2D-CD3 and NKG2D-CD16 fusion proteins for induction of NK and T cell reactivity against acute myeloid leukemia.
        J Immunother Cancer. 2019; 7: 143
        • Sallman D.A.
        • Kerre T.
        • Poire X.
        • Havelange V.
        • Lewalle P.
        • Davila M.L.
        • et al.
        Remissions in Relapse/Refractory Acute Myeloid Leukemia Patients Following Treatment with NKG2D CAR-T Therapy without a Prior Preconditioning Chemotherapy.
        Blood. 2018; 132: 902
        • Williams P.
        • Basu S.
        • Garcia‐Manero G.
        • Hourigan C.S.
        • Oetjen K.A.
        • Cortes J.E.
        • et al.
        The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia.
        Cancer. 2019; 125: 1470-1481
        • Daver N.
        Immune checkpoint inhibitors in acute myeloid leukemia.
        Best Pract Res Clin Haematol. 2021; 34: 101247https://doi.org/10.1016/j.beha.2021.101247
        • Davids M.S.
        • Kim H.T.
        • Bachireddy P.
        • Costello C.
        • Liguori R.
        • Savell A.
        • et al.
        Ipilimumab for Patients with Relapse after Allogeneic Transplantation.
        N Engl J Med. 2016; 375: 143-153
        • Daver N.
        • Boddu P.
        • Garcia-Manero G.
        • Yadav S.S.
        • Sharma P.
        • Allison J.
        • et al.
        Hypomethylating agents in combination with immune checkpoint inhibitors in acute myeloid leukemia and myelodysplastic syndromes.
        Leukemia. 2018; 32: 1094-1105
        • Daver N.
        • Garcia-Manero G.
        • Basu S.
        • Boddu P.C.
        • Alfayez M.
        • Cortes J.E.
        • et al.
        Efficacy, Safety, and Biomarkers of Response to Azacitidine and Nivolumab in Relapsed/Refractory Acute Myeloid Leukemia: A Nonrandomized, Open-Label, Phase II Study.
        Cancer Discov. 2019; 9: 370-383
        • Zeidner J.F.
        • Vincent B.G.
        • Ivanova A.
        • Moore D.
        • McKinnon K.P.
        • Wilkinson A.D.
        • et al.
        Phase II Trial of Pembrolizumab after High-Dose Cytarabine in Relapsed/Refractory Acute Myeloid Leukemia.
        Blood Cancer Discov. 2021; 2: 616-629
        • Ruggeri L.
        • Capanni M.
        • Urbani E.
        • Perruccio K.
        • Shlomchik W.D.
        • Tosti A.
        • et al.
        Effectiveness of Donor Natural Killer Cell Alloreactivity in Mismatched Hematopoietic Transplants.
        Science. 2002; 295: 2097-2100
        • Daver N.G.
        • Garcia-Manero G.
        • Cortes J.E.
        • Basu S.
        • Ravandi F.
        • Kadia T.M.
        • et al.
        Phase IB/II study of lirilumab with azacytidine (AZA) in relapsed AML.
        J Clin Oncol. 2017; 35: e18505
        • Vey N.
        • Dumas P.-Y.
        • Recher C.
        • Gastaud L.
        • Lioure B.
        • Bulabois C.-E.
        • et al.
        Randomized Phase 2 Trial of Lirilumab (anti-KIR monoclonal antibody, mAb) As Maintenance Treatment in Elderly Patients (pts) with Acute Myeloid Leukemia (AML): Results of the Effikir Trial.
        Blood. 2017; 130: 889
        • Cazzamalli S.
        • Ziffels B.
        • Widmayer F.
        • Murer P.
        • Pellegrini G.
        • Pretto F.
        • et al.
        Enhanced Therapeutic Activity of Non-Internalizing Small-Molecule-Drug Conjugates Targeting Carbonic Anhydrase IX in Combination with Targeted Interleukin-2.
        Clin Cancer Res. 2018; 24: 3656-3667
        • Dal Corso A.
        • Gébleux R.
        • Murer P.
        • Soltermann A.
        • Neri D.
        A non-internalizing antibody-drug conjugate based on an anthracycline payload displays potent therapeutic activity in vivo.
        J Control Release. 2017; 264: 211-218
        • Perrino E.
        • Steiner M.
        • Krall N.
        • Bernardes G.J.L.
        • Pretto F.
        • Casi G.
        • et al.
        Curative properties of noninternalizing antibody-drug conjugates based on maytansinoids.
        Cancer Res. 2014; 74: 2569-2578
        • Schliemann C.
        • Gutbrodt K.L.
        • Kerkhoff A.
        • Pohlen M.
        • Wiebe S.
        • Silling G.
        • et al.
        Targeting Interleukin-2 to the Bone Marrow Stroma for Therapy of Acute Myeloid Leukemia Relapsing after Allogeneic Hematopoietic Stem Cell Transplantation.
        Cancer Immunol Res. 2015; 3: 547-556
        • Gutbrodt K.L.
        • Schliemann C.
        • Giovannoni L.
        • Frey K.
        • Pabst T.
        • Klapper W.
        • et al.
        Antibody-based delivery of interleukin-2 to neovasculature has potent activity against acute myeloid leukemia.
        Sci Transl Med. 2013; 5https://doi.org/10.1126/scitranslmed.3006221
        • Brack S.S.
        • Silacci M.
        • Birchler M.
        • Neri D.
        Tumor-targeting properties of novel antibodies specific to the large isoform of tenascin-C.
        Clin Cancer Res. 2006; 12: 3200-3208
        • Schliemann C.
        • Kessler T.
        • Berdel A.F.
        • Hemmerle T.
        • Angenendt L.
        • Altvater B.
        • et al.
        Phase I study of F16IL2 antibody-cytokine fusion with very low-dose araC in acute myeloid leukaemia relapse after allogeneic stem cell transplantation.
        Br J Haematol. 2021; 192https://doi.org/10.1111/bjh.v192.610.1111/bjh.17365
      1. Berdel AF, Ruhnke L, Angenendt L, Wermke M, Röllig C, Mikesch JH, et al. Using stroma-anchoring cytokines to augment ADCC: a phase 1 trial of F16IL2 and BI 836858 for posttransplant AML relapse. Blood Adv. 2022.

        • Hänel G.
        • Neumann A.-S.
        • Pulko V.
        • Claus C.
        • Leutbecher A.
        • Marcinek A.
        • et al.
        Augmenting Efficacy of T-Cell Bispecific Antibodies in AML through a Tumor Stroma-Targeted 4–1BB Agonist.
        Blood. 2021; 138: 1178
        • Lambert J.
        • Pautas C.
        • Terré C.
        • Raffoux E.
        • Turlure P.
        • Caillot D.
        • et al.
        Gemtuzumab ozogamicin for de novo acute myeloid leukemia: final efficacy and safety updates from the open-label, phase III ALFA-0701 trial.
        Haematologica. 2019; 104: 113-119
        • Berdel A.F.
        • Rollig C.
        • Wermke M.
        • Angenendt L.
        • Ruhnke L.
        • Mikesch J.-H.
        • et al.
        A Phase I Trial of the Antibody-Cytokine Fusion Protein F16IL2 in Combination with Anti-CD33 Immunotherapy for Posttransplant AML Relapse.
        Blood. 2021; 138: 2345