Advertisement

Dietary influences on symptomatic and non-symptomatic toxicities during cancer treatment: A narrative review

      Highlights

      • Early data suggest that dietary interventions may reduce toxicities during treatment.
      • Future studies may examine the synergistic effects of combining diet interventions.
      • Nutritional guidelines for cancer treatment and survivorship are needed.

      Abstract

      The general nutritional status of cancer patients could be a central determinant of cancer treatment-related toxicity and an indicator of cancer symptoms such as cancer-related cachexia and weight loss. This narrative scientific review covers the impact of dietary patterns (for example, Mediterranean diet, short-term fasting, ketogenic diet), dietary components (for example, fruits and vegetables, fish oils, turmeric/curcumin, dietary fiber, phytochemicals, vitamin/mineral dietary supplements), and the gut microbiota on symptoms, toxicities, and adverse events associated with cancer treatment. Although several studies have produced controversial or inconclusive results, some promising preclinical studies and initial clinical trials suggest that dietary interventions may alleviate certain cancer treatment-related symptoms and toxicities. Possible mechanisms by which dietary components may influence symptomatic and non-symptomatic toxicities during cancer treatment include through impacting inflammation, oxidative stress, muscle mass, cardiac health and regulating the gut microbiome. Current ongoing studies will continue to shed light on whether specific dietary interventions, with a special emphasis on the gut microbiota, are an effective method to improve cancer treatment outcomes. Future studies should examine the synergistic effects of combining different nutritional interventions and establish diet-related guidelines for cancer treatment.

      Keywords

      To read this article in full you will need to make a payment
      ESMO Member Login
      Login with your ESMO username and password.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • NCI
        Common Terminology Criteria for Adverse Events v5.0. v5.0 ed.
        National Cancer Institute: National Cancer Institute. 2017;
        • Wang Y.
        • Zhou S.
        • Yang F.
        • Qi X.
        • Wang X.
        • Guan X.
        • et al.
        Treatment-Related Adverse Events of PD-1 and PD-L1 Inhibitors in Clinical Trials: A Systematic Review and Meta-analysis.
        JAMA oncology. 2019; 5: 1008
        • Bronte E.
        • Bronte G.
        • Novo G.
        • Rinaldi G.
        • Bronte F.
        • Passiglia F.
        • et al.
        Cardiotoxicity mechanisms of the combination of BRAF-inhibitors and MEK-inhibitors.
        Pharmacol Ther. 2018; 192: 65-73
        • Weekes J.
        • Lam A.K.
        • Sebesan S.
        • Ho Y.H.
        Irinotecan therapy and molecular targets in colorectal cancer: a systemic review.
        World J Gastroenterol. 2009; 15: 3597-3602
      1. NCI. NCI Dictionary of Cancer Terms. 17.09d ed. Bethesda, MD: National Cancer Institute.

        • Cleeland C.S.
        • Mendoza T.R.
        • Wang X.S.
        • Chou C.
        • Harle M.T.
        • Morrissey M.
        • et al.
        Assessing symptom distress in cancer patients: the M.D. Anderson Symptom Inventory.
        Cancer. 2000; 89: 1634-1646
        • Laviano A.
        • Molfino A.
        • Fanelli F.R.
        Cancer-treatment toxicity: can nutrition help?.
        Nat Rev Clin Oncol. 2012; 9
        • Branda R.F.
        • Chen Z.
        • Brooks E.M.
        • Naud S.J.
        • Trainer T.D.
        • McCormack J.J.
        Diet modulates the toxicity of cancer chemotherapy in rats.
        J Lab Clin Med. 2002; 140: 358-368
        • Barrea L.
        • Muscogiuri G.
        • Frias-Toral E.
        • Laudisio D.
        • Pugliese G.
        • Castellucci B.
        • et al.
        Nutrition and immune system: from the Mediterranean diet to dietary supplementary through the microbiota.
        Crit Rev Food Sci Nutr. 2021; 61: 3066-3090
        • Bertoia M.L.
        • Triche E.W.
        • Michaud D.S.
        • Baylin A.
        • Hogan J.W.
        • Neuhouser M.L.
        • et al.
        Mediterranean and Dietary Approaches to Stop Hypertension dietary patterns and risk of sudden cardiac death in postmenopausal women.
        The American journal of clinical nutrition. 2014; 99: 344-351
        • Baguley B.J.
        • Skinner T.L.
        • Jenkins D.G.
        • Orl w.
        Mediterranean-style dietary pattern improves cancer-related fatigue and quality of life in men with prostate cancer treated with androgen deprivation therapy: A pilot randomised control trial.
        Clinical nutrition (Edinburgh, Scotland). 2021; 40: 245-254
        • Ghisoni E.
        • Casalone V.
        • Giannone G.
        • Mittica G.
        • Tuninetti V.
        • G v.
        Role of Mediterranean diet in preventing platinum based gastrointestinal toxicity in gynecolocological malignancies: A single Institution experience. World.
        J Clin Oncol. 2019; 10: 391-401
        • Lee C.
        • Raffaghello L.
        • Brandhorst S.
        • Safdie F.M.
        • Bianchi G.
        • Martin-Montalvo A.
        • et al.
        Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy.
        Sci Transl Med. 2012; 4
        • Caffa I.
        • Spagnolo V.
        • Vernieri C.
        • Valdemarin F.
        • Becherini P.
        • Wei M.
        • et al.
        Fasting-mimicking diet and hormone therapy induce breast cancer regression.
        Nature. 2020; 583: 620-624
        • Lugtenberg R.T.
        • de Groot S.
        • Kaptein A.A.
        • Fischer M.J.
        • Kranenbarg E.-K.
        • Carpentier M.-d.
        • et al.
        Quality of life and illness perceptions in patients with breast cancer using a fasting mimicking diet as an adjunct to neoadjuvant chemotherapy in the phase 2 DIRECT (BOOG 2013–14) trial.
        Breast Cancer Res Treat. 2021; 185: 741-758
        • Zorn S.
        • Ehret J.
        • Schäuble R.
        • Rautenberg B.
        • Ihorst G.
        • Bertz H.
        • et al.
        Impact of modified short-term fasting and its combination with a fasting supportive diet during chemotherapy on the incidence and severity of chemotherapy-induced toxicities in cancer patients - a controlled cross-over pilot study.
        BMC Cancer. 2020; 20
        • Valdemarin F.
        • Caffa I.
        • Persia A.
        • Cremonini A.L.
        • Ferrando L.
        • Tagliafico L.
        • et al.
        Safety and Feasibility of Fasting-Mimicking Diet and Effects on Nutritional Status and Circulating Metabolic and Inflammatory Factors in Cancer Patients Undergoing Active Treatment.
        Cancers. 2021; 13: 4013
        • Vernieri C.
        • Fucà G.
        • Ligorio F.
        • Huber V.
        • Vingiani A.
        • Iannelli F.
        • et al.
        Fasting-mimicking diet is safe and reshapes metabolism and antitumor immunity in patients with cancer.
        Cancer Discovery. 2022; 12: 90-107
        • Wei M.
        • Brandhorst S.
        • Shelehchi M.
        • Mirzaei H.
        • Cheng C.W.
        • Budniak J.
        • et al.
        Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease.
        Sci Transl Med. 2017; 9
        • Raffaghello L.
        • Lee C.
        • Safdie F.M.
        • Wei M.
        • Madia F.
        • Bianchi G.
        • et al.
        Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy.
        Proc Natl Acad Sci. 2008; 105: 8215-8220
        • Jordan S.
        • Tung N.
        • Casanova-Acebes M.
        • Chang C.
        • Cantoni C.
        • Zhang D.
        • et al.
        Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool.
        Cell. 2019; 178
        • Brandhorst S.
        • Choi I.
        • Wei M.
        • Cheng C.
        • Sedrakyan S.
        • Navarrete G.
        • et al.
        A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan.
        Cell Metab. 2015; 22: 86-99
        • de Groot S.
        • Lugtenberg R.T.
        • Cohen D.
        • Welters M.J.P.
        • Ehsan I.
        • Vreeswijk M.P.G.
        • et al.
        Fasting mimicking diet as an adjunct to neoadjuvant chemotherapy for breast cancer in the multicentre randomized phase 2 DIRECT trial.
        Nat Commun. 2020; 11
        • Barrea L.
        • Caprio M.
        • Tuccinardi D.
        • Moriconi E.
        • Di Renzo L.
        • Muscogiuri G.
        • et al.
        Could ketogenic diet “starve” cancer? Emerging evidence.
        Crit Rev Food Sci Nutr. 2022; 62: 1800-1821
        • Champ C.E.
        • Palmer J.D.
        • Volek J.S.
        • Werner-Wasik M.
        • Andrews D.W.
        • Evans J.J.
        • et al.
        Targeting metabolism with a ketogenic diet during the treatment of glioblastoma multiforme.
        J Neurooncol. 2014; 117: 125-131
        • Klement R.J.
        • Champ C.E.
        • Kämmerer U.
        • Koebrunner P.S.
        • Krage K.
        • Schäfer G.
        • et al.
        Impact of a ketogenic diet intervention during radiotherapy on body composition: III-final results of the KETOCOMP study for breast cancer patients.
        Breast Cancer Res. 2020; 22
        • Weber D.D.
        • Aminazdeh-Gohari S.
        • Kofler B.
        Ketogenic diet in cancer therapy.
        Aging. 2018; 10: 164-165
        • Liberti M.V.
        • Locasale J.W.
        The Warburg Effect: How Does it Benefit Cancer Cells?.
        Trends Biochem Sci. 2016; 41: 211-218
        • Aykin-Burns N.
        • Ahmad Iman M.
        • Zhu Y.
        • Oberley Larry W.
        • Spitz D.R.
        Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation.
        Biochem J. 2009; 418: 29-37
        • Branco A.F.
        • Ferreira A.
        • Simões R.F.
        • Magalhães-Novais S.
        • Zehowski C.
        • Cope E.
        • et al.
        Ketogenic diets: from cancer to mitochondrial diseases and beyond.
        Eur J Clin Invest. 2016; 46: 285-298
        • Liao Y.J.
        • Wang Y.H.
        • Wu C.Y.
        • Hsu F.Y.
        • Chien C.Y.
        • Lee Y.C.
        Ketogenic Diet Enhances the Cholesterol Accumulation in Liver and Augments the Severity of CCl 4 and TAA-Induced Liver Fibrosis in Mice.
        Int J Mol Sci. 2021; 22: 2934
        • Xia S.
        • Lin R.
        • Jin L.
        • Zhao L.
        • Kang H.-B.
        • Pan Y.
        • et al.
        Prevention of dietary-fat-fueled ketogenesis attenuates BRAF V600E tumor growth.
        Cell Metab. 2017; 25: 358-373
      2. Wedlake L, Shaw C, McNair H, Lalji A, Mohammed K, Klopper T, et al. Randomized controlled trial of dietary fiber for the prevention of radiation-induced gastrointestinal toxicity during pelvic radiotherapy. American Journal of Clinical Nutrition. 2017;106:849-57.

        • Benus R.F.J.
        • van der Werf T.S.
        • Welling G.W.
        • Judd P.A.
        • Taylor M.A.
        • Harmsen H.J.M.
        • et al.
        Association between Faecalibacterium prausnitzii and dietary fibre in colonic fermentation in healthy human subjects.
        The British journal of nutrition. 2010; 104: 693-700
        • Spencer C.N.
        • McQuade J.L.
        • Gopalakrishnan V.
        • McCulloch J.A.
        • Vetizou M.
        • Cogdill A.P.
        • et al.
        Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response.
        Science. 2021; 374: 1632-1640
        • Wang J.W.
        • Zhang C.G.
        • Deng Q.L.
        • Chen W.L.
        • Wang X.
        • Yu J.M.
        The associations of comorbidities and consumption of fruit and vegetable with quality of life among stomach cancer survivors.
        Health and quality of life outcomes. 2018; 16: 62
        • Rodriguez-Casado A.
        The health potential of fruits and vegetables phytochemicals: notable examples.
        Crit Rev Food Sci Nutr. 2016; 56: 1097-1107
        • Zhou Y.
        • Li Y.
        • Zhou T.
        • Zheng J.
        • Li S.
        • Li H.-B.
        Dietary natural products for prevention and treatment of liver cancer.
        Nutrients. 2016; 8: 156
        • Salehi B.
        • Mishra A.
        • Nigam M.
        • Sener B.
        • Kilic M.
        • Sharifi-Rad M.
        • et al.
        Resveratrol: A double-edged sword in health benefits.
        Biomedicines. 2018; 6: 91
        • Rejhová A.
        • Opattová A.
        • Čumová A.
        • Slíva D.
        • Vodička P.
        Natural compounds and combination therapy in colorectal cancer treatment.
        Eur J Med Chem. 2018; 144: 582-594
        • Brown V.A.
        • Patel K.R.
        • Viskaduraki M.
        • Crowell J.A.
        • Perloff M.
        • Booth T.D.
        • et al.
        Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin-like growth factor axis.
        Cancer Res. 2010; 70: 9003-9011
        • Berman A.Y.
        • Motechin R.A.
        • Wiesenfeld M.Y.
        • Holz M.K.
        The therapeutic potential of resveratrol: a review of clinical trials. npj Precision.
        Oncology. 2017; 1
        • Lefranc F.
        • Tabanca N.
        • Kiss R.
        Assessing the anticancer effects associated with food products and/or nutraceuticals using in vitro and in vivo preclinical development-related pharmacological tests.
        Semin Cancer Biol. 2017; 46: 14-32
        • Gupta P.
        • Bhatia N.
        • Bansal M.P.
        • Koul A.
        Lycopene modulates cellular proliferation, glycolysis and hepatic ultrastructure during hepatocellular carcinoma.
        World Journal of Hepatology. 2016; 8: 1222-1233
        • Chen D.
        • Huang C.
        • Chen Z.
        A review for the pharmacological effect of lycopene in central nervous system disorders.
        Biomed Pharmacother. 2019; 111: 791-801
        • Li Y.
        • Revalde J.
        • Jw p.
        The effects of dietary and herbal phytochemicals on drug transporters.
        Adv Drug Deliv Rev. 2017; 116: 45-62
        • Sinha D.
        • Biswas J.
        • Nabavi S.M.
        • Bishayee A.
        Tea phytochemicals for breast cancer prevention and intervention: From bench to bedside and beyond.
        Semin Cancer Biol. 2017; 46: 33-54
        • Pajonk F.
        • Riedisser A.
        • Henke M.
        • McBride W.H.
        • Fiebich B.
        The effects of tea extracts on proinflammatory signaling.
        BMC medicine. 2006; 4: 28
        • Annabi B.
        • Lee Y.T.
        • Martel C.
        • Pilorget A.
        • Bahary J.P.
        • Beliveau R.
        Radiation induced-tubulogenesis in endothelial cells is antagonized by the antiangiogenic properties of green tea polyphenol (-) epigallocatechin-3-gallate.
        Cancer Biol Ther. 2003; 2: 642-649
        • Yamamoto T.
        • Staples J.
        • Wataha J.
        • Lewis J.
        • Lockwood P.
        • Schoenlein P.
        • et al.
        Protective effects of EGCG on salivary gland cells treated with gamma-radiation or cis-platinum(II)diammine dichloride.
        Anticancer Res. 2004; 24: 3065-3073
        • Lecumberri E.
        • Dupertuis Y.M.
        • Miralbell R.
        • Pichard C.
        Green tea polyphenol epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy.
        Clinical Nutrition. 2013; 32: 894-903
        • Sriram N.
        • Kalayarasan S.
        • Sudhandiran G.
        Epigallocatechin-3-gallate exhibits anti-fibrotic effect by attenuating bleomycin-induced glycoconjugates, lysosomal hydrolases and ultrastructural changes in rat model pulmonary fibrosis.
        Chem Biol Interact. 2009; 180: 271-280
        • Wessner B.
        • Strasser E.M.
        • Koitz N.
        • Schmuckenschlager C.
        • Unger-Manhart N.
        • Roth E.
        Green tea polyphenol administration partly ameliorates chemotherapy-induced side effects in the small intestine of mice.
        J Nutr. 2007; 137: 634-640
        • Sergent T.
        • Piront N.
        • Meurice J.
        • Toussaint O.
        • Schneider Y.-J.
        Anti-inflammatory effects of dietary phenolic compounds in an in vitro model of inflamed human intestinal epithelium.
        Chem Biol Interact. 2010; 188: 659-667
        • Sahin K.
        • Tuzcu M.
        • Gencoglu H.
        • Dogukan A.
        • Timurkan M.
        • Sahin N.
        • et al.
        Epigallocatechin-3-gallate activates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats.
        Life Sci. 2010; 87: 240-245
        • Schmitt N.C.
        • Rubel E.W.
        • Nathanson N.M.
        Cisplatin-induced hair cell death requires STAT1 and is attenuated by epigallocatechin gallate.
        J. Neurosci. 2009; 29: 3843-3851
        • Huang W.
        • Ding L.
        • Huang Q.
        • Hu H.
        • Liu S.
        • Yang X.
        • et al.
        Carbonyl reductase 1 as a novel target of (-)-epigallocatechin gallate against hepatocellular carcinoma.
        Hepatology (Baltimore, MD). 2010; 52: 703-714
        • Zheng J.
        • Lee H.C.M.
        • bin Sattar M.M.
        • Huang Y.u.
        • Bian J.-S.
        Cardioprotective effects of epigallocatechin-3-gallate against doxorubicin-induced cardiomyocyte injury.
        Eur J Pharmacol. 2011; 652: 82-88
        • Sun X.
        • Zhang J.
        • Gupta R.
        • MacGibbon A.K.H.
        • Kuhn-Sherlock B.
        • Krissansen G.W.
        Dairy milk fat augments paclitaxel therapy to suppress tumour metastasis in mice, and protects against the side-effects of chemotherapy.
        Clin Exp Metastasis. 2011; 28: 675-688
        • Kroenke C.H.
        • Kwan M.L.
        • Sweeney C.
        • Castillo A.
        • Caan B.J.
        High- and Low-Fat Dairy Intake, Recurrence, and Mortality After Breast Cancer Diagnosis.
        JNCI: Journal of the National Cancer Institute. 2013; 105: 616-623
        • Cho E.
        • Spiegelman D.
        • Hunter D.J.
        • Chen W.Y.
        • Stampfer M.J.
        • Colditz G.A.
        • et al.
        Premenopausal Fat Intake and Risk of Breast Cancer.
        JNCI: Journal of the National Cancer Institute. 2003; 95: 1079-1085
        • Vernieri C.
        • Nichetti F.
        • Raimondi A.
        • Pusceddu S.
        • Platania M.
        • Berrino F.
        • et al.
        Diet and supplements in cancer prevention and treatment: Clinical evidences and future perspectives.
        Crit Rev Oncol Hematol. 2018; 123: 57-73
        • Aredes M.A.
        • da Camara A.O.
        • de Paula N.S.
        • Fraga K.Y.D.
        • do Carmo M.D.G.T.
        • Chaves G.V.
        Efficacy of ω-3 supplementation on nutritional status, skeletal muscle, and chemoradiotherapy toxicity in cervical cancer patients: A randomized, triple-blind, clinical trial conducted in a middle-income country.
        Nutrition. 2019; 67-68: 110528
        • Chitapanarux I.
        • Traisathit P.
        • Chitapanarux T.
        • Jiratrachu R.
        • Chottaweesak P.
        • Chakrabandhu S.
        • et al.
        Arginine, glutamine, and fish oil supplementation in cancer patients treated with concurrent chemoradiotherapy: A randomized control study.
        Curr Probl Cancer. 2020; 44: 100482
        • Senkal M.
        • Haaker R.
        • Linseisen J.
        • Wolfram G.
        • Homann H.H.
        • Stehle P.
        Preoperative oral supplementation with long-chain omega-3 fatty acids beneficially alters phospholipid fatty acid patterns in liver, gut mucosa, and tumor tissue.
        JPEN J Parenter Enteral Nutr. 2005; 29: 236-240
        • Sánchez-Lara K.
        • Turcott J.G.
        • Juárez-Hernández E.
        • Nuñez-Valencia C.
        • Villanueva G.
        • Guevara P.
        • et al.
        Effects of an oral nutritional supplement containing eicosapentaenoic acid on nutritional and clinical outcomes in patients with advanced non-small cell lung cancer: randomised trial.
        Clinical nutrition (Edinburgh, Scotland). 2014; 33: 1017-1023
        • Zhang X.
        • Chen H.
        • Lu Y.i.
        • Xu C.
        • Yao W.
        • Xu L.u.
        • et al.
        Prevention of oxaliplatin-related neurotoxicity by ω-3 PUFAs: A double-blind randomized study of patients receiving oxaliplatin combined with capecitabine for colon cancer.
        Medicine. 2020; 99
        • Maschio M.
        • Zarabla A.
        • Maialetti A.
        • Marchesi F.
        • Giannarelli D.
        • Gumenyuk S.
        • et al.
        The Effect of Docosahexaenoic Acid and α-Lipoic Acid as Prevention of Bortezomib-Related Neurotoxicity in Patients With Multiple Myeloma.
        Integr Cancer Ther. 2019; 18
        • Baracos V.E.
        • Mazurak V.C.
        • Ma D.W.L.
        n-3 Polyunsaturated fatty acids throughout the cancer trajectory: influence on disease incidence, progression, response to therapy and cancer-associated cachexia.
        Nutr Res Rev. 2004; 17: 177-192
        • Baracos V.E.
        • Martin L.
        • Korc M.
        • Guttridge D.C.
        • Fearon K.C.H.
        Cancer-associated cachexia.
        Cancer-associated cachexia Nature reviews Disease primers. 2018; 4
        • Miyata H.
        • Yano M.
        • Yasuda T.
        • Yamasaki M.
        • Murakami K.
        • Makino T.
        • et al.
        Randomized study of the clinical effects of ω-3 fatty acid–containing enteral nutrition support during neoadjuvant chemotherapy on chemotherapy-related toxicity in patients with esophageal cancer.
        Nutrition. 2017; 33: 204-210
        • Camargo C.d.Q.
        • Mocellin M.C.
        • Brunetta H.S.
        • Chagas T.R.
        • Fabre M.E.d.S.
        • Trindade E.B.S.d.M.
        • et al.
        Fish oil decreases the severity of treatment-related adverse events in gastrointestinal cancer patients undergoing chemotherapy: A randomized, placebo-controlled, triple-blind clinical trial.
        Clin Nutr ESPEN. 2019; 31: 61-70
        • Hajjaji N.
        • Bougnoux P.
        Selective sensitization of tumors to chemotherapy by marine-derived lipids: a review.
        Cancer Treat Rev. 2013; 39: 473-488
        • Freitas R.D.S.
        • Campos M.M.
        Protective Effects of Omega-3 Fatty Acids in Cancer-Related Complications.
        Nutrients. 2019; 11: 945
        • Boutros C.
        • Somasundar P.
        • Razzak A.
        • Helton S.
        • Espat N.J.
        Omega-3 Fatty Acids: Investigations From Cytokine Regulation to Pancreatic Cancer Gene Suppression.
        Arch Surg. 2010; 145: 515-520
        • Massaro M.
        • Habib A.
        • Lubrano L.
        • Turco S.D.
        • Lazzerini G.
        • Bourcier T.
        • et al.
        The omega-3 fatty acid docosahexaenoate attenuates endothelial cyclooxygenase-2 induction through both NADP(H) oxidase and PKCε inhibition.
        Proc Natl Acad Sci. 2006; 103: 15184-15189
        • Daenen L.G.M.
        • Cirkel G.A.
        • Houthuijzen J.M.
        • Gerrits J.
        • Oosterom I.
        • Roodhart J.M.L.
        • et al.
        Increased plasma levels of chemoresistance-inducing fatty acid 16:4(n-3) after consumption of fish and fish oil.
        JAMA oncology. 2015; 1: 350
      3. Weng W, Goel A. Curcumin and colorectal cancer: An update and current perspective on this natural medicine. Semin Cancer Biol. 2020:S1044-579X(20)30044-4.

        • Akbari S.
        • Kariznavi E.
        • Jannati M.
        • Elyasi S.
        • Tayarani-Najaran Z.
        Curcumin as a preventive or therapeutic measure for chemotherapy and radiotherapy induced adverse reaction: A comprehensive review.
        Food Chem Toxicol. 2020; 145: 111699
        • Li Y.A.N.
        • Shi X.U.E.
        • Zhang J.
        • Zhang X.
        • Martin R.C.
        Hepatic protection and anticancer activity of curcuma: A potential chemopreventive strategy against hepatocellular carcinoma.
        Int J Oncol. 2014; 44: 505-513
        • Chen W.-L.
        • Yang T.-S.
        • Chen H.-C.
        • Chen H.-H.
        • Chiang H.-C.
        • Lin T.-C.
        • et al.
        Effectiveness of a novel herbal agent MB-6 as a potential adjunct to 5-fluoracil-based chemotherapy in colorectal cancer.
        Nutrition research (New York, NY). 2014; 34: 585-594
        • Normando A.G.C.
        • Menêses A.G.
        • Toledo I.P.
        • Borges G.Á.
        • Lima C.L.
        • Reis P.E.D.
        • et al.
        Effects of turmeric and curcumin on oral mucositis: A systematic review.
        Phytother Res. 2019; 33: 1318-1329
        • Delavarian Z.
        • Pakfetrat A.
        • Ghazi A.
        • Jaafari M.R.
        • Homaei Shandiz F.
        • Dalirsani Z.
        • et al.
        Oral administration of nanomicelle curcumin in the prevention of radiotherapy-induced mucositis in head and neck cancers.
        Spec Care Dentist. 2019; 39: 166-172
        • Martínez L.
        • Ros G.
        • Nieto G.
        Hydroxytyrosol: Health Benefits and Use as Functional Ingredient in Meat.
        Medicines (Basel). 2018; 5: 13
        • Martínez N.
        • Herrera M.
        • Frías L.
        • Provencio M.
        • Pérez-Carrión R.
        • Díaz V.
        • et al.
        A combination of hydroxytyrosol, omega-3 fatty acids and curcumin improves pain and inflammation among early-stage breast cancer patients receiving adjuvant hormonal therapy: results of a pilot study.
        Clin Transl Oncol. 2019; 21: 489-498
        • Anitha A.
        • Sreeranganathan M.
        • Chennazhi K.P.
        • Lakshmanan V.-K.
        • Jayakumar R.
        In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N, O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies.
        European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2014; 88: 238-251
        • Nautiyal J.
        • Kanwar S.S.
        • Yu Y.
        • Majumdar A.P.N.
        Combination of dasatinib and curcumin eliminates chemo-resistant colon cancer cells.
        J Mol Signaling. 2011;6:7-.; 6: 7
        • Somasundaram S.
        • Edmund N.A.
        • Moore D.T.
        • Small G.W.
        • Shi Y.Y.
        • Orlowski R.Z.
        Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer.
        Cancer Res. 2002; 62: 3868-3875
        • Prieto I.
        • Montemuiño S.
        • Luna J.
        • de Torres M.V.
        • Amaya E.
        The role of immunonutritional support in cancer treatment: Current evidence.
        Clinical Nutrition. 2017; 36: 1457-1464
        • Langner E.
        • Rzeski W.
        Dietary derived compounds in cancer chemoprevention.
        Contemporary Oncology. 2012; 16: 394-400
        • Skalickova S.
        • Milosavljevic V.
        • Cihalova K.
        • Horky P.
        • Richtera L.
        • Adam V.
        Selenium nanoparticles as a nutritional supplement.
        Nutrition. 2017; 33: 83-90
        • Rayman M.P.
        The use of high-selenium yeast to raise selenium status: How does it measure up?.
        Br J Nutr. 2004; 92: 557-573
        • Varela-López A.
        • Battino M.
        • Navarro-Hortal M.D.
        • Giampieri F.
        • Forbes-Hernández T.Y.
        • Romero-Márquez J.M.
        • et al.
        An update on the mechanisms related to cell death and toxicity of doxorubicin and the protective role of nutrients.
        Food Chem Toxicol. 2019; 134: 110834
      4. Institute of Medicine Panel on Dietary A, Related C. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. Washington (DC): National Academies Press (US); 2000.

        • Jacobs C.
        • Hutton B.
        • Ng T.
        • Shorr R.
        • Clemons M.
        Is there a role for oral or intravenous ascorbate (vitamin C) in treating patients with cancer?.
        A systematic review Oncologist. 2015; 20: 210-223
        • Thursby E.
        • Juge N.
        Introduction to the human gut microbiota.
        Biochem J. 2017; 474: 1823-1836
        • Wargo J.A.
        Modulating gut microbes.
        Science. 2020; 369: 1302-1303
        • Allegretti J.R.
        • Mullish B.H.
        • Kelly C.
        • Fischer M.
        The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications.
        Lancet (London, England). 2019; 394: 420-431
        • Peled J.U.
        • Devlin S.M.
        • Staffas A.
        • Lumish M.
        • Khanin R.
        • Littmann E.R.
        • et al.
        Intestinal microbiota and relapse after hematopoietic-cell transplantation.
        J. Clin. Oncol. 2017; 35: 1650-1659
        • Alexander J.L.
        • Wilson I.D.
        • Teare J.
        • Marchesi J.R.
        • Nicholson J.K.
        • Kinross J.M.
        Gut microbiota modulation of chemotherapy efficacy and toxicity.
        Nat Rev Gastroenterol Hepatol. 2017; 14: 356-365
        • Routy B.
        • Le Chatelier E.
        • Derosa L.
        • Duong C.P.M.
        • Alou M.T.
        • Daillère R.
        • et al.
        Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors.
        Science. 2018; 359: 91-97
        • Gopalakrishnan V.
        • Spencer C.N.
        • Nezi L.
        • Reuben A.
        • Andrews M.C.
        • Karpinets T.V.
        • et al.
        Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients.
        Science. 2018; 359: 97-103
        • Viaud S.
        • Saccheri F.
        • Mignot G.
        • Yamazaki T.
        • Daillère R.
        • Hannani D.
        • et al.
        The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide.
        Science. 2013; 342: 971-976
        • Daillère R.
        • Vétizou M.
        • Waldschmitt N.
        • Yamazaki T.
        • Isnard C.
        • Poirier-Colame V.
        • et al.
        Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects.
        Immunity. 2016; 45: 931-943
        • Ramakrishna C.
        • Corleto J.
        • Ruegger P.M.
        • Logan G.D.
        • Peacock B.B.
        • Mendonca S.
        • et al.
        Dominant role of the gut microbiota in chemotherapy induced neuropathic pain.
        Sci Rep. 2019; 9
        • Mitra A.
        • Grossman Biegert G.W.
        • Delgado A.Y.
        • Karpinets T.V.
        • Solley T.N.
        • Mezzari M.P.
        • et al.
        Microbial diversity and composition is associated with patient-reported toxicity during chemoradiation therapy for cervical cancer.
        Int J Radiat Oncol Biol Phys. 2020; 107: 163-171
        • De Pietri S.
        • Ingham A.C.
        • Frandsen T.L.
        • Rathe M.
        • Krych L.
        • Castro‐Mejía J.L.
        • et al.
        Gastrointestinal toxicity during induction treatment for childhood acute lymphoblastic leukemia: The impact of the gut microbiota.
        Int J Cancer. 2020; 147: 1953-1962
        • Abreu M.T.
        • Vora P.
        • Faure E.
        • Thomas L.S.
        • Arnold E.T.
        • Arditi M.
        Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide.
        Journal of immunology (Baltimore, MD. 1950; 2001: 1609-1616
        • Frank M.
        • Hennenberg E.M.
        • Eyking A.
        • Rünzi M.
        • Gerken G.
        • Scott P.
        • et al.
        TLR signaling modulates side effects of anticancer therapy in the small intestine.
        J Immunol. 2015; 194: 1983-1995
        • Villa A.
        • Sonis S.T.
        Mucositis: pathobiology and management.
        Curr Opin Oncol. 2015; 27: 159-164
        • Wallace B.D.
        • Wang H.
        • Lane K.T.
        • Scott J.E.
        • Orans J.
        • Koo J.S.
        • et al.
        Alleviating cancer drug toxicity by inhibiting a bacterial enzyme.
        Science. 2010; 330: 831-835
        • Song M.
        • Chan A.T.
        • J. s.
        Influence of the gut microbiome, diet, and environment on risk of colorectal cancer.
        Gastroenterology. 2020; 158: 322-340
        • Warner A.B.
        • McQuade J.L.
        Modifiable host factors in melanoma: Emerging evidence for obesity, diet, exercise, and the microbiome.
        Current Oncology Reports. 2019; 21: 72
        • Tang Q.
        • Zuo T.
        • Lu S.
        • Wu J.
        • Wang J.
        • Zheng R.
        • et al.
        Dietary squid ink polysaccharides ameliorated the intestinal microflora dysfunction in mice undergoing chemotherapy.
        Food Funct. 2014; 5: 2529-2535
        • Yun T.-K.
        Panax ginseng–a non-organ-specific cancer preventive?.
        Lancet Oncol. 2001; 2: 49-55
        • Wang C.-Z.
        • Zhang Z.
        • Wan J.-Y.
        • Zhang C.-F.
        • Anderson S.
        • He X.
        • et al.
        Protopanaxadiol, an Active Ginseng Metabolite, Significantly Enhances the Effects of Fluorouracil on Colon Cancer.
        Nutrients. 2015; 7: 799-814
        • Selma M.V.
        • Beltrán D.
        • García-Villalba R.
        • Espín J.C.
        • Tomás-Barberán F.A.
        Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species.
        Food Funct. 2014; 5: 1779-1784
        • Bowen J.M.
        • Stringer A.M.
        • Gibson R.J.
        • Yeoh A.S.
        • Hannam S.
        • Keefe D.M.
        VSL#3 probiotic treatment reduces chemotherapy-induced diarrhea and weight loss.
        Cancer Biol Ther. 2007; 6: 1449-1454
        • Yeung C.-Y.
        • Chan W.-T.
        • Jiang C.-B.
        • Cheng M.-L.
        • Liu C.-Y.
        • Chang S.-W.
        • et al.
        Amelioration of chemotherapy-induced intestinal mucositis by orally administered probiotics in a mouse model.
        PLoS ONE. 2015; 10
        • Österlund P.
        • Ruotsalainen T.
        • Korpela R.
        • Saxelin M.
        • Ollus A.
        • Valta P.
        • et al.
        Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study.
        Br J Cancer. 2007; 97: 1028-1034
        • Wada M.
        • Nagata S.
        • Saito M.
        • Shimizu T.
        • Yamashiro Y.
        • Matsuki T.
        • et al.
        Effects of the enteral administration of Bifidobacterium breve on patients undergoing chemotherapy for pediatric malignancies.
        Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer. 2010; 18: 751-759
        • Taper H.S.
        • Roberfroid M.B.
        Possible adjuvant cancer therapy by two prebiotics–inulin or oligofructose.
        In vivo (Athens, Greece). 2005; 19: 201-204
        • Encarnação J.C.
        • Pires A.S.
        • Amaral R.A.
        • Gonçalves T.J.
        • Laranjo M.
        • Casalta-Lopes J.E.
        • et al.
        Butyrate, a dietary fiber derivative that improves irinotecan effect in colon cancer cells.
        J Nutr Biochem. 2018; 56: 183-192