Advertisement

Oncolytic viruses: A new immunotherapeutic approach for breast cancer treatment?

Published:April 07, 2022DOI:https://doi.org/10.1016/j.ctrv.2022.102392

      Highlights

      • The goal of immunotherapy in cancer is to overcome immunosuppression induced by the tumour and its microenvironment, thereby allowing the immune system to target and eliminate cancer cells.
      • Despite advances in cancer immunotherapy with the development of immune checkpoint inhibitors (ICIs), only a fraction of breast cancer patients benefits from these agents. Thus, new therapies are needed.
      • Oncolytic viruses (OVs) specifically infect and lyse cancer cells promoting the activation of innate and adaptive immune responses.
      • OVs have shown promising results in breast cancer turning “cold” non-immunoreactive tumors into “hot” immunocompetent tumors.
      • Additional research is necessary to optimize viral vectors, target patient population and biomarker selection.

      Abstract

      Immunotherapy has revolutionized the oncology field during the last years, mainly with the introduction of immune checkpoint inhibitors in the clinical routine. Despite the recent approval of these drugs for the treatment of triple-negative breast cancer, most breast cancer patients cannot benefit from immunotherapy as most tumors are not considered immunoreactive. Therefore, new strategies must be developed to bring immunotherapy closer to breast cancer patients. The introduction of oncolytic viruses in the immuno-oncology field has shown promising results in cancer treatment, including breast cancer. However, a better understanding of their mechanisms of action, increase evidence of safety and efficacy, and the implications of its use as a systemic therapy must be examined in more depth. This review provides a summary of oncolytic virotherapy in the context of breast cancer, both in the pre-clinical and clinical setting.

      Keywords

      To read this article in full you will need to make a payment
      ESMO Member Login
      Login with your ESMO username and password.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Couzin-Frankel J.
        Cancer immunotherapy.
        Science. 2013; 342: 1432-1433
        • Schmid P.
        • Adams S.
        • Rugo H.S.
        • Schneeweiss A.
        • Barrios C.H.
        • Iwata H.
        • et al.
        Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer.
        N Engl J Med. 2018; 379: 2108-2121
        • Cortés J.
        • Cescon D.W.
        • Rugo H.S.
        • Im S.-A.
        • Md Yusof M.
        • Gallardo C.
        • et al.
        LBA16 KEYNOTE-355: Final results from a randomized, double-blind phase III study of first-line pembrolizumab + chemotherapy vs placebo + chemotherapy for metastatic TNBC.
        Ann Oncol. 2021; 32: S1289-S1290
        • Cortes J.
        • Cescon D.W.
        • Rugo H.S.
        • Nowecki Z.
        • Im S.-A.
        • Yusof M.M.
        • et al.
        Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial.
        Lancet. 2020; 396: 1817-1828
        • Schmid P.
        • Cortes J.
        • Dent R.
        • Pusztai L.
        • McArthur H.
        • Kümmel S.
        • et al.
        VP7-2021: KEYNOTE-522: Phase III study of neoadjuvant pembrolizumab + chemotherapy vs. placebo + chemotherapy, followed by adjuvant pembrolizumab vs. placebo for early-stage TNBC.
        Ann Oncol. 2021; 32: 1198-1200
        • Tolaney S.M.
        • Barroso-Sousa R.
        • Keenan T.
        • Trippa L.
        • Hu J.
        • Luis I.M.V.D.
        • et al.
        Randomized phase II study of eribulin mesylate (E) with or without pembrolizumab (P) for hormone receptor-positive (HR+) metastatic breast cancer (MBC).
        J Clin Oncol. 2019; 37: 1004
        • Rugo H.S.
        • Delord J.-P.
        • Im S.-A.
        • Ott P.A.
        • Piha-Paul S.A.
        • Bedard P.L.
        • et al.
        Safety and antitumor activity of pembrolizumab in patients with estrogen receptor–positive/human epidermal growth factor receptor 2–negative advanced breast cancer.
        Clin Cancer Res. 2018; 24: 2804-2811
        • Galon J.
        • Bruni D.
        Approaches to treat immune hot, altered and cold tumours with combination immunotherapies.
        Nat Rev Drug Discov. 2019; 18: 197-218
        • Miles D.
        • Roché H.
        • Martin M.
        • Perren T.J.
        • Cameron D.A.
        • Glaspy J.
        • et al.
        Phase III Multicenter Clinical Trial of the Sialyl-TN (STn)-Keyhole Limpet Hemocyanin (KLH) Vaccine for Metastatic Breast Cancer.
        Oncologist. 2011; 16: 1092-1100
        • Corti C.
        • Giachetti P.P.M.B.
        • Eggermont A.M.M.
        • Delaloge S.
        • Curigliano G.
        Therapeutic vaccines for breast cancer: Has the time finally come?.
        Eur J Cancer. 2022; 160: 150-174
        • Mogensen T.H.
        Pathogen recognition and inflammatory signaling in innate immune defenses.
        Clin Microbiol Rev. 2009; 22: 240-273
        • Kaufman H.L.
        • Kohlhapp F.J.
        • Zloza A.
        Oncolytic viruses: A new class of immunotherapy drugs.
        Nat Rev Drug Discov. 2015; 14: 642-662
        • Gelderblom H.R.
        Structure and Classification of Viruses.
        University of Texas Medical Branch at Galveston. 1996;
        • Sanjuán R.
        • Domingo-Calap P.
        Mechanisms of viral mutation.
        Cell Mol Life Sci. 2016; 73: 4433-4448
        • Haseley A.
        • Alvarez-Breckenridge C.
        • Chaudhury A.R.
        • Kaur B.
        Advances in oncolytic virus therapy for glioma.
        Recent Pat CNS Drug Discov. 2009; https://doi.org/10.2174/157488909787002573
        • Bommareddy P.K.
        • Shettigar M.
        • Kaufman H.L.
        Integrating oncolytic viruses in combination cancer immunotherapy.
        Nat Rev Immunol. 2018; 18: 498-513
        • O‘Bryan S.M.
        • Mathis J.M.
        Oncolytic Virotherapy for Breast Cancer Treatment.
        Curr Gene Ther. 2018; 18: 192-205
        • Savontaus M.J.
        • Sauter B.V.
        • Huang T.-G.
        • Woo SLC
        Transcriptional targeting of conditionally replicating adenovirus to dividing endothelial cells.
        Gene Ther. 2002; 9: 972-979
        • Dmitriev I.
        • Krasnykh V.
        • Miller C.R.
        • Wang M.
        • Kashentseva E.
        • Mikheeva G.
        • et al.
        An Adenovirus Vector with Genetically Modified Fibers Demonstrates Expanded Tropism via Utilization of a Coxsackievirus and Adenovirus Receptor-Independent Cell Entry Mechanism.
        J Virol. 1998; 72: 9706-9713
        • Norman K.L.
        • Coffey M.C.
        • Hirasawa K.
        • Demetrick D.J.
        • Nishikawa S.G.
        • DiFrancesco L.M.
        • et al.
        Reovirus oncolysis of human breast cancer.
        Hum Gene Ther. 2002; 13: 641-652
        • Mostafa A.
        • Meyers D.
        • Thirukkumaran C.
        • Liu P.
        • Gratton K.
        • Spurrell J.
        • et al.
        Oncolytic reovirus and immune checkpoint inhibition as a novel immunotherapeutic strategy for breast cancer.
        Cancers (Basel). 2018; 10: 205
        • Skelding K.A.
        • Barry R.D.
        • Shafren D.R.
        Systemic targeting of metastatic human breast tumor xenografts by Coxsackievirus A21.
        Breast Cancer Res Treat. 2009; 113: 21-30
        • Holl E.K.
        • Brown M.C.
        • Boczkowski D.
        • McNamara M.A.
        • George D.J.
        • Bigner D.D.
        • et al.
        Recombinant oncolytic poliovirus, PVSRIPO, has potent cytotoxic and innate inflammatory effects, mediating therapy in human breast and prostate cancer xenograft models.
        Oncotarget. 2016; 7: 79828-79841
        • Ahmed M.
        • Puckett S.
        • Lyles D.S.
        Susceptibility of breast cancer cells to an oncolytic matrix (M) protein mutant of vesicular stomatitis virus.
        Cancer Gene Ther. 2010; 17: 883-892
        • Iankov I.D.
        • Msaouel P.
        • Allen C.
        • Federspiel M.J.
        • Bulur P.A.
        • Dietz A.B.
        • et al.
        Demonstration of anti-tumor activity of oncolytic measles virus strains in a malignant pleural effusion breast cancer model.
        Breast Cancer Res Treat. 2010; 122: 745-754
        • Sugiyama T.
        • Yoneda M.
        • Kuraishi T.
        • Hattori S.
        • Inoue Y.
        • Sato H.
        • et al.
        Measles virus selectively blind to signaling lymphocyte activation molecule as a novel oncolytic virus for breast cancer treatment.
        Gene Ther. 2013; 20: 338-347
        • Bourgeois-Daigneault M.-C.
        • St-Germain L.E.
        • Roy D.G.
        • Pelin A.
        • Aitken A.S.
        • Arulanandam R.
        • et al.
        Combination of Paclitaxel and MG1 oncolytic virus as a successful strategy for breast cancer treatment.
        Breast Cancer Res. 2016; 18https://doi.org/10.1186/s13058-016-0744-y
        • Zhang J.
        • Tai L.-H.
        • Ilkow C.S.
        • Alkayyal A.A.
        • Ananth A.A.
        • de Souza C.T.
        • et al.
        Maraba MG1 virus enhances natural killer cell function via conventional dendritic cells to reduce postoperative metastatic disease.
        Mol Ther. 2014; 22: 1320-1332
        • Ginting T.
        • Suryatenggara J.
        • Christian S.
        • Mathew G.
        Proinflammatory response induced by Newcastle disease virus in tumor and normal cells.
        Oncolytic Virotherapy. 2017; https://doi.org/10.2147/ov.s123292
        • Hemminki O.
        • Dos Santos J.M.
        • Hemminki A.
        Oncolytic viruses for cancer immunotherapy.
        J Hematol Oncol. 2020; 13: 84https://doi.org/10.1186/s13045-020-00922-1
        • Bauerschmitz G.J.
        • Ranki T.
        • Kangasniemi L.
        • Ribacka C.
        • Eriksson M.
        • Porten M.
        • et al.
        Issue-specific promoters active in CD44+CD24-/low breast cancer cells.
        Cancer Res. 2008; 68: 5533-5539https://doi.org/10.1158/0008-5472.CAN-07-5288
        • Tuve S.
        • Wang H.
        • Ware C.
        • Liu Y.
        • Gaggar A.
        • Bernt K.
        • et al.
        A new group B adenovirus receptor is expressed at high levels on human stem and tumor cells.
        J Virol. 2006; 80: 12109-12120
        • Menotti L.
        • Cerretani A.
        • Hengel H.
        • Campadelli-Fiume G.
        Construction of a fully retargeted herpes simplex virus 1 recombinant capable of entering cells solely via human epidermal growth factor receptor 2.
        J Virol. 2008; 82: 10153-10161
        • Menotti L.
        • Nicoletti G.
        • Gatta V.
        • Croci S.
        • Landuzzi L.
        • De Giovanni C.
        • et al.
        Inhibition of human tumor growth in mice by an oncolytic herpes simplex virus designed to target solely HER-2-positive cells.
        Proc Natl Acad Sci U S A. 2009; 106: 9039-9044
        • Gholami S.
        • Marano A.
        • Chen N.G.
        • Aguilar R.J.
        • Frentzen A.
        • Chen C.-H.
        • et al.
        A novel vaccinia virus with dual oncolytic and anti-angiogenic therapeutic effects against triple-negative breast cancer.
        Breast Cancer Res Treat. 2014; 148: 489-499
        • Xia T.
        • Konno H.
        • Barber G.N.
        Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis.
        Cancer Res. 2016; 76: 6747-6759
        • Xia T.
        • Konno H.
        • Ahn J.
        • Barber G.N.
        Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis.
        Cell Rep. 2016; 14: 282-297
        • Munir M.
        • Berg M.
        The multiple faces of proteinkinase R in antiviral defense.
        Virulence. 2013; 4: 85-89
        • Fernandes J.
        Oncogenes: The passport for viral oncolysis through PKR inhibition.
        Biomark Cancer. 2016; 8: BIC.S33378
        • Mounir Z.
        • Krishnamoorthy J.L.
        • Robertson G.P.
        • Scheuner D.
        • Kaufman R.J.
        • Georgescu M.-M.
        • et al.
        Tumor suppression by PTENR equires the activation of the PKR-eIF2α phosphorylation pathway.
        Sci Signal. 2009; 2https://doi.org/10.1126/scisignal.2000389
        • Fueyo J.
        • Gomez-Manzano C.
        • Alemany R.
        • Lee P.SY.
        • McDonnell T.J.
        • Mitlianga P.
        • et al.
        A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo.
        Oncogene. 2000; 19: 2-12
        • Pelka P.
        • Miller M.S.
        • Cecchini M.
        • Yousef A.F.
        • Bowdish D.M.
        • Dick F.
        • et al.
        Adenovirus E1A directly targets the E2F/DP-1 complex.
        J Virol. 2011; 85: 8841-8851
        • Koski A.
        • Kangasniemi L.
        • Escutenaire S.
        • Pesonen S.
        • Cerullo V.
        • Diaconu I.
        • et al.
        Treatment of cancer patients with a serotype 5/3 chimeric oncolytic adenovirus expressing GMCSF.
        Mol Ther. 2010; 18: 1874-1884
        • Sauthoff H.
        • Pipiya T.
        • Heitner S.
        • Chen S.
        • Bleck B.
        • Reibman J.
        • et al.
        Impact of E1a modifications on tumor-selective adenoviral replication and toxicity.
        Mol Ther. 2004; 10: 749-757
        • Cassady K.A.
        • Gross M.
        The herpes simplex virus type 1 US11 protein interacts with protein kinase R in infected cells and requires a 30-amino-acid sequence adjacent to a kinase substrate domain.
        J Virol. 2002; 76: 2029-2035
        • Zinn R.L.
        • Pruitt K.
        • Eguchi S.
        • Baylin S.B.
        • Herman J.G.
        hTERT is expressed in cancer cell lines despite promoter DNA methylation by preservation of unmethylated DNA and active chromatin around the transcription start site.
        Cancer Res. 2007; 67: 194-201
        • Fukuhara H.
        • Ino Y.
        • Todo T.
        Oncolytic virus therapy: A new era of cancer treatment at dawn.
        Cancer Sci. 2016; 107: 1373-1379
        • Chung R.Y.
        • Saeki Y.
        • Chiocca E.A.
        B-myb promoter retargeting of herpes simplex virus γ34.5 gene-mediated virulence toward tumor and cycling cells.
        J Virol. 1999; 73: 7556-7564
        • Ma J.
        • Ramachandran M.
        • Jin C.
        • Quijano-Rubio C.
        • Martikainen M.
        • Yu D.i.
        • et al.
        Characterization of virus-mediated immunogenic cancer cell death and the consequences for oncolytic virus-based immunotherapy of cancer.
        Cell Death Dis. 2020; 11https://doi.org/10.1038/s41419-020-2236-3
        • Workenhe S.T.
        • Mossman K.L.
        Oncolytic virotherapy and immunogenic cancer cell death: Sharpening the sword for improved cancer treatment strategies.
        Mol Ther. 2014; 22: 251-256
        • Malhotra J.D.
        • Kaufman R.J.
        The endoplasmic reticulum and the unfolded protein response.
        Semin Cell Dev Biol. 2007; 18: 716-731
        • Freytag S.O.
        • Khil M.
        • Stricker H.
        • Peabody J.
        • Menon M.
        • DePeralta-Venturina M.
        • et al.
        Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer.
        Cancer Res. 2002;
        • Zhu W.
        • Zhang H.
        • Shi Y.i.
        • Song M.
        • Zhu B.
        • Wei L.
        Oncolytic adenovirus encoding tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits the growth and metastasis of triple-negative breast cancer.
        Cancer Biol Ther. 2013; 14: 1016-1023
        • Liikanen I.
        • Tähtinen S.
        • Guse K.
        • Gutmann T.
        • Savola P.
        • Oksanen M.
        • et al.
        Oncolytic adenovirus expressing monoclonal antibody trastuzumab for treatment of HER2-positive cancer.
        Mol Cancer Ther. 2016; 15: 2259-2269
        • Choi J.-W.
        • Lee Y.S.
        • Yun C.-O.
        • Kim S.W.
        Polymeric oncolytic adenovirus for cancer gene therapy.
        J Control Release. 2015; 219: 181-191
        • Ruiz A.J.
        • Russell S.J.
        MicroRNAs and oncolytic viruses.
        Curr Opin Virol. 2015; 13: 40-48
        • Garg A.D.
        • Dudek-Peric A.M.
        • Romano E.
        • Agostinis P.
        Immunogenic cell death.
        Int J Dev Biol. 2015; 59: 131-140https://doi.org/10.1387/ijdb.150061pa
      1. Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 2005. https://doi.org/10.1084/jem.20050915.

        • Kepp O.
        • Senovilla L.
        • Vitale I.
        • Vacchelli E.
        • Adjemian S.
        • Agostinis P.
        • et al.
        Consensus guidelines for the detection of immunogenic cell death.
        Oncoimmunology. 2014; 3: e955691
        • Serrano-del Valle A.
        • Anel A.
        • Naval J.
        • Marzo I.
        Immunogenic cell death and immunotherapy of multiple myeloma.
        Front Cell Dev Biol. 2019; https://doi.org/10.3389/fcell.2019.00050
        • Achard C.
        • Boisgerault N.
        • Delaunay T.
        • Tangy F.
        • Grégoire M.
        • Fonteneau J.-F.
        Induction of immunogenic tumor cell death by attenuated oncolytic measles.
        Virus. 2015; https://doi.org/10.4172/2155-9899.1000291
        • Tang D.
        • Kang R.
        • Coyne C.B.
        • Zeh H.J.
        • Lotze M.T.
        PAMPs and DAMPs: Signal 0s that spur autophagy and immunity.
        Immunol Rev. 2012; 249: 158-175
        • Haag F.
        • Adriouch S.
        • Braß A.
        • Jung C.
        • Möller S.
        • Scheuplein F.
        • et al.
        Extracellular NAD and ATP: Partners in immune cell modulation.
        Purinergic Signal. 2007; 3https://doi.org/10.1007/s11302-006-9038-7
        • Gardai S.J.
        • McPhillips K.A.
        • Frasch S.C.
        • Janssen W.J.
        • Starefeldt A.
        • Murphy-Ullrich J.E.
        • et al.
        Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte.
        Cell. 2005; 123: 321-334
        • Spranger S.
        • Dai D.
        • Horton B.
        • Gajewski T.F.
        Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy.
        Cancer Cell. 2017; 31: 711-723.e4
        • Hildner K.
        • Edelson B.T.
        • Purtha W.E.
        • Diamond M.
        • Matsushita H.
        • Kohyama M.
        • et al.
        Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity.
        Science. 2008; 322: 1097-1100
        • Schmidt S.V.
        • Nino-Castro A.C.
        • Schultze J.L.
        Regulatory dendritic cells: There is more than just immune activation.
        Front Immunol. 2012; https://doi.org/10.3389/fimmu.2012.00274
        • Pandya P.H.
        • Murray M.E.
        • Pollok K.E.
        • Renbarger J.L.
        The immune system in cancer pathogenesis: potential therapeutic approaches.
        J Immunol Res. 2016; 2016: 1-13
        • Joffre O.P.
        • Segura E.
        • Savina A.
        • Amigorena S.
        Cross-presentation by dendritic cells.
        Nat Rev Immunol. 2012; 12: 557-569
      2. M. M, S. C, M.J. H, I.L. C. Review: The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity - A tale of conflict and conundrum. Neuropathol Appl Neurobiol 2010.

        • Brode S.
        • MacAry P.A.
        Cross-presentation: Dendritic cells and macrophages bite off more than they can chew!.
        Immunology. 2004; 112: 345-351https://doi.org/10.1111/j.1365-2567.2004.01920.x
        • Gulley J.L.
        • Madan R.A.
        • Pachynski R.
        • Mulders P.
        • Sheikh N.A.
        • Trager J.
        • et al.
        Role of antigen spread and distinctive characteristics of immunotherapy in cancer treatment.
        J Natl Cancer Inst. 2017; 109https://doi.org/10.1093/jnci/djw261
        • Markert J.M.
        • Cody J.J.
        • Parker J.N.
        • Coleman J.M.
        • Price K.H.
        • Kern E.R.
        • et al.
        Preclinical evaluation of a genetically engineered herpes simplex virus expressing interleukin-12.
        J Virol. 2012; 86: 5304-5313
        • Li J.-L.
        • Liu H.-L.
        • Zhang X.-R.
        • Xu J.-P.
        • Hu W.-K.
        • Liang M.
        • et al.
        A phase I trial of intratumoral administration of recombinant oncolytic adenovirus overexpressing HSP70 in advanced solid tumor patients.
        Gene Ther. 2009; 16: 376-382
        • Toda M.
        • Martuza R.L.
        • Rabkin S.D.
        Tumor growth inhibition by intratumoral inoculation of defective herpes simplex virus vectors expressing granulocyte - Macrophage colony-stimulating factor.
        Mol Ther. 2000; 2: 324-329
        • Hu J.C.C.
        • Coffin R.S.
        • Davis C.J.
        • Graham N.J.
        • Groves N.
        • Guest P.J.
        • et al.
        A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor.
        Clin Cancer Res. 2006; 12: 6737-6747
        • Goldsmith K.
        • Chen W.
        • Johnson D.C.
        • Hendricks R.L.
        Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8+ T cell response.
        J Exp Med. 1998; 187: 341-348
        • Uchida H.
        • Hamada H.
        • Nakano K.
        • Kwon H.
        • Tahara H.
        • Cohen J.B.
        • et al.
        Oncolytic herpes simplex virus vectors fully retargeted to tumor- associated antigens.
        Curr Cancer Drug Targets. 2018; 18: 162-170
        • Zamarin D.
        • Holmgaard R.B.
        • Ricca J.
        • Plitt T.
        • Palese P.
        • Sharma P.
        • et al.
        Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity.
        Nat Commun. 2017; 8https://doi.org/10.1038/ncomms14340
        • Breitbach C.J.
        • De Silva N.S.
        • Falls T.J.
        • Aladl U.
        • Evgin L.
        • Paterson J.
        • et al.
        Targeting tumor vasculature with an oncolytic virus.
        Mol Ther. 2011; 19: 886-894
        • Barber G.N.
        Host defense, viruses and apoptosis.
        Cell Death Differ. 2001; 8: 113-126
        • Cattaneo R.
        • Miest T.
        • Shashkova E.V.
        • Barry M.A.
        Reprogrammed viruses as cancer therapeutics: Targeted, armed and shielded.
        Nat Rev Microbiol. 2008; 6: 529-540
        • Tesfay M.Z.
        • Kirk A.C.
        • Hadac E.M.
        • Griesmann G.E.
        • Federspiel M.J.
        • Barber G.N.
        • et al.
        PEGylation of vesicular stomatitis virus extends virus persistence in blood circulation of passively immunized mice.
        J Virol. 2013; 87: 3752-3759
        • Garofalo M.
        • Villa A.
        • Rizzi N.
        • Kuryk L.
        • Mazzaferro V.
        • Ciana P.
        Systemic administration and targeted delivery of immunogenic oncolytic adenovirus encapsulated in extracellular vesicles for cancer therapies.
        Viruses. 2018; 10: 558
        • Lun X.Q.
        • Jang J.-H.
        • Tang N.
        • Deng H.
        • Head R.
        • Bell J.C.
        • et al.
        Efficacy of systemically administered oncolytic vaccinia virotherapy for malignant gliomas is enhanced by combination therapy with rapamycin or cyclophosphamide.
        Clin Cancer Res. 2009; 15: 2777-2788
        • Alemany R.
        • Suzuki K.
        • Curiel D.T.
        Blood clearance rates of adenovirus type 5 in mice.
        J Gen Virol. 2000; 81: 2605-2609
        • Andtbacka R.H.I.
        • Collichio F.
        • Harrington K.J.
        • Middleton M.R.
        • Downey G.
        • Ӧhrling K.
        • et al.
        Final analyses of OPTiM: A randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma.
        J Immunother Cancer. 2019; 7https://doi.org/10.1186/s40425-019-0623-z
        • Liu B.L.
        • Robinson M.
        • Han Z.-Q.
        • Branston R.H.
        • English C.
        • Reay P.
        • et al.
        ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties.
        Gene Ther. 2003; 10: 292-303
        • Demir G.
        • Klein H.O.
        • Tuzuner N.
        Low dose daily rhGM-CSF application activates monocytes and dendritic cells in vivo.
        Leuk Res. 2003; 27: 1105-1108
        • Cooke K.
        • Rottman J.
        • Zhan J.
        • Mitchell P.
        • Ikotun O.
        • Yerby B.
        • et al.
        Oncovex MGM-CSF –mediated regression of contralateral (non-injected) tumors in the A20 murine lymphoma model does not involve direct viral oncolysis.
        J Immunother Cancer. 2015; 3https://doi.org/10.1186/2051-1426-3-s2-p336
      3. Hecht JR, Chan A, Baurain J-F, Martin M, Longo-Munoz F, Kalinsky K, et al. Abstract P3-09-19: Preliminary safety data of intrahepatic talimogene laherparepvec and intravenous atezolizumab in patients with triple negative breast cancer, 2020. https://doi.org/10.1158/1538-7445.sabcs19-p3-09-19.

        • Hecht J.R.
        • Prat A.
        • Pless M.
        • Cubillo A.
        • Calvo A.
        • Raman S.
        • et al.
        A phase 1b/2, multicenter, open-label trial to evaluate the safety of talimogene laherparepvec (T-VEC) injected into primary and metastatic liver tumors alone and in combination with pembrolizumab (pembro) (MASTERKEY-318).
        J Clin Oncol. 2018; 36: TPS3105
        • Kai M.
        • Marx A.N.
        • Liu D.D.
        • Shen Y.u.
        • Gao H.
        • Reuben J.M.
        • et al.
        A phase II study of talimogene laherparepvec for patients with inoperable locoregional recurrence of breast cancer.
        Sci Rep. 2021; 11https://doi.org/10.1038/s41598-021-01473-2
      4. Soliman H, Hogue D, Han H, Mooney B, Costa R, Lee MC, et al. Abstract CT040: A Phase I trial of talimogene laherparepvec combined with neoadjuvant chemotherapy for non-metastatic triple negative breast cancer, 2019. https://doi.org/10.1158/1538-7445.sabcs18-ct040.

        • Soliman H.
        • Hogue D.
        • Han H.
        • Mooney B.
        • Costa R.
        • Lee M.C.
        • et al.
        A phase I trial of talimogene laherparepvec in combination with neoadjuvant chemotherapy for the treatment of nonmetastatic triple-negative breast cancer.
        Clin Cancer Res. 2021; 27: 1012-1018
        • Pascual T.
        • Cejalvo J.M.
        • Oliveira M.
        • Vidal M.
        • Vega E.
        • Ganau S.
        • et al.
        SOLTI-1503 PROMETEO TRIAL: Combination of talimogene laherparepvec with atezolizumab in early breast cancer.
        Futur Oncol. 2020; 16: 1801-1813
      5. Pascual T, Villagrasa P, Vidal MJ, Ganau S, Bermejo B, Julve A, et al. Abstract OT1-01-01: SOLTI-1503 PROMETEO: Combination of talimogene laherparepvec (T-VEC) with atezolizumab in patients with residual breast cancer after standard neoadjuvant multi-agent chemotherapy, 2020. https://doi.org/10.1158/1538-7445.sabcs19-ot1-01-01.

      6. Pascual T, Cejalvo JM, Oliveira M, Vidal M, Vega E, Ganau S, et al. Abstract OT-13-06: Solti-1503 PROMETEO: Talimogene laherparepvec (T-VEC) + atezolizumab combination in early breast cancer, 2021. https://doi.org/10.1158/1538-7445.sabcs20-ot-13-06.

        • Sahin T.T.
        • Kasuya H.
        • Nomura N.
        • Shikano T.
        • Yamamura K.
        • Gewen T.
        • et al.
        Impact of novel oncolytic virus HF10 on cellular components of the tumor microenviroment in patients with recurrent breast cancer.
        Cancer Gene Ther. 2012; 19: 229-237
        • Phillips M.
        • Stuart J.
        • Rodríguez Stewart R.
        • Berry J.
        • Mainou B.
        • Boehme K.
        Current understanding of reovirus oncolysis mechanisms.
        Oncolytic Virotherapy. 2018; https://doi.org/10.2147/ov.s143808
        • Samson A.
        • Scott K.J.
        • Taggart D.
        • West E.J.
        • Wilson E.
        • Nuovo G.J.
        • et al.
        Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade.
        Sci Transl Med. 2018; 10https://doi.org/10.1126/scitranslmed.aam7577
        • Adair R.A.
        • Roulstone V.
        • Scott K.J.
        • Morgan R.
        • Nuovo G.J.
        • Fuller M.
        • et al.
        Cell carriage, delivery, and selective replication of an oncolytic virus in tumor in patients.
        Sci Transl Med. 2012; 4https://doi.org/10.1126/scitranslmed.3003578
        • Adair R.A.
        • Scott K.J.
        • Fraser S.
        • Errington-Mais F.
        • Pandha H.
        • Coffey M.
        • et al.
        Cytotoxic and immune-mediated killing of human colorectal cancer by reovirus-loaded blood and liver mononuclear cells.
        Int J Cancer. 2013; 132: 2327-2338
        • Gollamudi R.
        • Ghalib M.H.
        • Desai K.K.
        • Chaudhary I.
        • Wong B.
        • Einstein M.
        • et al.
        Intravenous administration of Reolysin®, a live replication competent RNA virus is safe in patients with advanced solid tumors.
        Invest New Drugs. 2010; 28: 641-649
        • Vidal L.
        • Pandha H.S.
        • Yap T.A.
        • White C.L.
        • Twigger K.
        • Vile R.G.
        • et al.
        A phase I study of intravenous oncolytic reovirus type 3 dearing in patients with advanced cancer.
        Clin Cancer Res. 2008; 14: 7127-7137
        • Mita A.C.
        • Sankhala K.
        • Sarantopoulos J.
        • Carmona J.
        • Okuno S.
        • Goel S.
        • et al.
        A phase II study of intravenous (IV) wild-type reovirus (Reolysin) in the treatment of patients with bone and soft tissue sarcomas metastatic to the lung.
        J Clin Oncol. 2009; 27: 10524
        • Galanis E.
        • Markovic S.N.
        • Suman V.J.
        • Nuovo G.J.
        • Vile R.G.
        • Kottke T.J.
        • et al.
        Phase II trial of intravenous administration of reolysin ® (reovirus serotype-3-dearing strain) in patients with metastatic melanoma.
        Mol Ther. 2012; 20: 1998-2003
        • Bernstein V.
        • Ellard S.L.
        • Dent S.F.
        • Tu D.
        • Mates M.
        • Dhesy-Thind S.K.
        • et al.
        A randomized phase II study of weekly paclitaxel with or without pelareorep in patients with metastatic breast cancer: final analysis of Canadian Cancer Trials Group IND.213.
        Breast Cancer Res Treat. 2018; 167: 485-493
        • Nuciforo P.
        • Pascual T.
        • Cortés J.
        • Llombart-Cussac A.
        • Fasani R.
        • Paré L.
        • et al.
        A predictive model of pathologic response based on tumor cellularity and tumor-infiltrating lymphocytes (CelTIL) in HER2-positive breast cancer treated with chemo-free dual HER2 blockade.
        Ann Oncol. 2018; 29: 170-177
        • Manso L.
        • Villagrasa P.
        • Chic N.
        • Cejalvo J.M.
        • Izarzugaza Y.
        • Cantos B.
        • et al.
        41P A window-of-opportunity study with atezolizumab and the oncolityc virus pelareorep in early breast cancer (REO-027, AWARE-1).
        Ann Oncol. 2020; 31: S30
        • Manso L.
        • Villagrasa P.
        • Chic N.
        • Bermejo B.
        • Cejalvo J.
        • Izarzugaza Y.
        • et al.
        806 Changes in T cell clonality in AWARE-1 study, a window-of-opportunity study with atezolizumab and the oncolytic virus pelareorep in early breast cancer.
        J Immunother Cancer. 2020; 8: A855https://doi.org/10.1136/jitc-2020-SITC2020.0806
      7. Manso L, Villagrasa P, Chic N, Bermejo B, Cejalvo JM, Izarzugaza Y, et al. Abstract PS12-08: A window-of-opportunity study with atezolizumab and the oncolytic virus pelareorep in early breast cancer (REO-027, AWARE-1), 2021. https://doi.org/10.1158/1538-7445.sabcs20-ps12-08.

      8. George M, Williams N, Lustberg M, Omene C, Chan N, Ohri N, et al. Abstract OT-32-02: Irene study: Phase 2 study of incmga00012 (retifanlimab)and the oncolytic virus pelareorep in metastatic triple negative breast cancer, 2021. https://doi.org/10.1158/1538-7445.sabcs20-ot-32-02.

      9. Miller K, Zhao F, Clark A, Wilkinson G, Laeufle R, Wolff A. Abstract OT-13-02: Bracelet-1 (pre0113): A study to assess overall response rate by inducing an inflammatory phenotype in metastatic breast cancer with the oncolytic reovirus pelareorep in combination with anti-PD-L1 avelumab and paclitaxel, 2021. https://doi.org/10.1158/1538-7445.sabcs20-ot-13-02.

        • Zarogoulidis P.
        • Darwiche K.
        • Sakkas A.
        • Yarmus L.
        • Huang H.
        • Li Q.
        • et al.
        Suicide gene therapy for cancer - current strategies.
        J Genet Syndr Gene Ther. 2013;
        • Zhang J.
        • Kale V.
        • Chen M.
        Gene-directed enzyme prodrug therapy.
        AAPS J. 2015; 17: 102-110
        • Zhang H.
        • Qin L.
        • Li C.
        • Jiang J.
        • Sun L.
        • Zhao X.
        • et al.
        Adenovirus-mediated herpes simplex virus thymidine kinase gene therapy combined with ganciclovir induces hepatoma cell apoptosis.
        Exp Ther Med. 2019; https://doi.org/10.3892/etm.2019.7147
        • Park B.-H.
        • Hwang T.
        • Liu T.-C.
        • Sze D.Y.
        • Kim J.-S.
        • Kwon H.-C.
        • et al.
        Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial.
        Lancet Oncol. 2008; 9: 533-542
        • Breitbach C.J.
        • Burke J.
        • Jonker D.
        • Stephenson J.
        • Haas A.R.
        • Chow L.Q.M.
        • et al.
        Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans.
        Nature. 2011; 477: 99-102
        • Breitbach C.J.
        • Moon A.
        • Burke J.
        • Hwang T.H.
        • Kirn D.H.
        A phase 2, open-label, randomized study of Pexa-Vec (JX-594) administered by intratumoral injection in patients with unresectable primary hepatocellular carcinoma.
        Methods Mol Biol. 2015; https://doi.org/10.1007/978-1-4939-2727-2_19
        • Myers R.M.
        • Greiner S.M.
        • Harvey M.E.
        • Griesmann G.
        • Kuffel M.J.
        • Buhrow S.A.
        • et al.
        Preclinical pharmacology and toxicology of intravenous MV-NIS, an oncolytic measles virus administered with or without cyclophosphamide.
        Clin Pharmacol Ther. 2007; 82: 700-710
        • Iankov I.D.
        • Allen C.
        • Federspiel M.J.
        • Myers R.M.
        • Peng K.W.
        • Ingle J.N.
        • et al.
        Expression of immunomodulatory neutrophil-activating protein of Helicobacter pylori enhances the antitumor activity of oncolytic measles virus.
        Mol Ther. 2012; 20: 1139-1147
        • Roy D.G.
        • Geoffroy K.
        • Marguerie M.
        • Khan S.T.
        • Martin N.T.
        • Kmiecik J.
        • et al.
        Adjuvant oncolytic virotherapy for personalized anti-cancer vaccination.
        Nat Commun. 2021; 12https://doi.org/10.1038/s41467-021-22929-z
        • Jonker D.J.
        • Hotte S.J.
        • Abdul Razak A.R.
        • Renouf D.J.
        • Lichty B.
        • Bell J.C.
        • et al.
        Phase I study of oncolytic virus (OV) MG1 maraba/MAGE-A3 (MG1MA3), with and without transgenic MAGE-A3 adenovirus vaccine (AdMA3) in incurable advanced/metastatic MAGE-A3-expressing solid tumours: CCTG IND.214.
        J Clin Oncol. 2017; 35: e14637
        • Emens L.A.
        • Goldstein L.D.
        • Schmid P.
        • Rugo H.S.
        • Adams S.
        • Barrios C.H.
        • et al.
        The tumor microenvironment (TME) and atezolizumab + nab -paclitaxel (A+nP) activity in metastatic triple-negative breast cancer (mTNBC): IMpassion130.
        J Clin Oncol. 2021; 39: 1006
        • Schmid P.
        • Cortes J.
        • Pusztai L.
        • McArthur H.
        • Kümmel S.
        • Bergh J.
        • et al.
        Pembrolizumab for early triple-negative breast cancer.
        N Engl J Med. 2020; 382: 810-821
        • Mittendorf E.A.
        • Zhang H.
        • Barrios C.H.
        • Saji S.
        • Jung K.H.
        • Hegg R.
        • et al.
        Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): a randomised, double-blind, phase 3 tria.
        Lancet. 2020; 396: 1090-1100
      10. Gianni L, Huang C-S, Egle D, Bermejo B, Zamagni C, Thill M, et al. Abstract GS3-04: Pathologic complete response (pCR) to neoadjuvant treatment with or without atezolizumab in triple negative, early high-risk and locally advanced breast cancer. NeoTRIPaPDL1 Michelangelo randomized study, 2020. https://doi.org/10.1158/1538-7445.sabcs19-gs3-04.

      11. Hamilton E, Shapiro CL, Petrylak D, Boni V, Martin M, Conte G Del, et al. Abstract PD3-07: Trastuzumab deruxtecan (T-DXd; DS-8201) with nivolumab in patients with HER2-expressing, advanced breast cancer: A 2-part, phase 1b, multicenter, open-label study, 2021. https://doi.org/10.1158/1538-7445.sabcs20-pd3-07.

      12. S. L, A. G-H, A. G, T. B, R. H, G. C, et al. Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): a single-arm, multicentre, phase 1b–2 trial. Lancet Oncol 2019.

        • Goldberg J.
        • Pastorello R.G.
        • Vallius T.
        • Davis J.
        • Cui Y.X.
        • Agudo J.
        • et al.
        The immunology of hormone receptor positive breast cancer.
        Front Immunol. 2021; 12https://doi.org/10.3389/fimmu.2021.674192
        • Ali H.R.
        • Provenzano E.
        • Dawson S.-J.
        • Blows F.M.
        • Liu B.
        • Shah M.
        • et al.
        Association between CD8+ T-cell infiltration and breast cancer survival in 12,439 patients.
        Ann Oncol. 2014; 25: 1536-1543
        • Loi S.
        • Sirtaine N.
        • Piette F.
        • Salgado R.
        • Viale G.
        • Van Eenoo F.
        • et al.
        Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02–98.
        J Clin Oncol. 2013; 31: 860-867
        • Salgado R.
        • Denkert C.
        • Demaria S.
        • Sirtaine N.
        • Klauschen F.
        • Pruneri G.
        • et al.
        The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014.
        Ann Oncol. 2015; 26: 259-271
      13. Ciruelos E, Pascual T, Chic N, Muñoz M, Bermejo B, Virizuela JA, et al. Abstract OT-13-04: Solti-1716. Targeting non-Luminal disease by PAM50 with pembrolizumab + paclitaxel in Hormone Receptor-positive/HER2-negative advanced/metastatic breast cancer patients who have progressed on or after CDK 4/6 inhibitor treatment (TATEN , 2021. https://doi.org/10.1158/1538-7445.sabcs20-ot-13-04.

        • Gebremeskel S.
        • Nelson A.
        • Walker B.
        • Oliphant T.
        • Lobert L.
        • Mahoney D.
        • et al.
        Natural killer T cell immunotherapy combined with oncolytic vesicular stomatitis virus or reovirus treatments differentially increases survival in mouse models of ovarian and breast cancer metastasis.
        J Immunother Cancer. 2021; 9: e002096
        • Mehta A.K.
        • Cheney E.M.
        • Hartl C.A.
        • Pantelidou C.
        • Oliwa M.
        • Castrillon J.A.
        • et al.
        Targeting immunosuppressive macrophages overcomes PARP inhibitor resistance in BRCA1-associated triple-negative breast cancer.
        Nat Cancer. 2021; 2: 66-82
        • Martin N.T.
        • Roy D.G.
        • Workenhe S.T.
        • van den Wollenberg D.J.M.
        • Hoeben R.C.
        • Mossman K.L.
        • et al.
        Pre-surgical neoadjuvant oncolytic virotherapy confers protection against rechallenge in a murine model of breast cancer.
        Sci Rep. 2019; 9https://doi.org/10.1038/s41598-018-38385-7
        • Liu
        A comparison of plasmid DNA and mRNA as vaccine technologies.
        Vaccines. 2019; 7: 37
        • Yu L.
        • Baxter P.A.
        • Zhao X.
        • Liu Z.
        • Wadhwa L.
        • Zhang Y.
        • et al.
        A single intravenous injection of oncolytic picornavirus SVV-001 eliminates medulloblastomas in primary tumor-based orthotopic xenograft mouse models.
        Neuro Oncol. 2011; 13: 14-27