Advertisement

Precision medicine in breast cancer: From clinical trials to clinical practice

      Abstract

      Introduction

      Breast cancer (BC) is the most common cancer in women and, despite the undeniable improvements in the outcome of these patients obtained in the last decade, the discovery and the validation of new actionable molecular targets represent a priority. ESCAT permits to rank molecular alterations in different classes according to their evidence of actionability in a specific cancer type, assisting clinicians in their therapeutical decisions.

      Main

      ERBB2, PIK3CA and germline BRCA1/2 alterations are biomarkers prospectively validated in BC, driving the selection of targeted therapies, and are therefore classified in the highest level of evidence (Ia). Agnostic biomarkers, namely microsatellite instability, NTRK fusions and high tumor mutational burden, demonstrated similar activity across different tumor types and are consequently ranked in tier Ic. In tier II are classified alterations that still need confirmatory prospective studies but for which evidence of efficacy is available. Somatic BRCA1/2 mutations, germline PALB2 mutations, HER2-low expression, ERBB2 mutations, PTEN deletions, AKT1 mutations, ESR1 resistance mutations satisfy the requirements to be classified in this tier. In tier III are ranked various molecular alterations for which there is evidence of actionability in other tumors (IIIa) or that have similar functional impact in the same gene or pathway of a tier I alteration, without clinical data (IIIb). In tier IV are listed the molecular alterations for which only preclinical studies are available.

      Conclusion

      In this review we report the most relevant molecular targets in BC, ordered pursuant to their pathway and classified in concordance with ESCAT.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cancer Treatment Reviews
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Garraway L.A.
        • Verweij J.
        • Ballman K.V.
        Precision oncology: An overview.
        J Clin Oncol. 2013; 31: 1803-1805https://doi.org/10.1200/JCO.2013.49.4799
        • Mateo J.
        • Chakravarty D.
        • Dienstmann R.
        • Jezdic S.
        • Gonzalez-Perez A.
        • Lopez-Bigas N.
        • et al.
        A framework to rank genomic alterations as targets for cancer precision medicine: The ESMO Scale for Clinical Actionability of molecular Targets (ESCAT).
        Ann Oncol. 2018; 29: 1895-1902https://doi.org/10.1093/annonc/mdy263
        • Condorelli R.
        • Mosele F.
        • Verret B.
        • Bachelot T.
        • Bedard P.L.
        • Cortes J.
        • et al.
        Genomic alterations in breast cancer: Level of evidence for actionability according to ESMO Scale for Clinical Actionability of molecular Targets (ESCAT).
        Ann Oncol. 2019; 30: 365-373https://doi.org/10.1093/annonc/mdz036
        • Siegel R.L.
        • Miller K.D.
        • Jemal A.
        Cancer statistics, 2020.
        CA Cancer J Clin. 2020; 70: 7-30https://doi.org/10.3322/caac.21590
        • Waks A.G.
        • Winer E.P.
        Breast Cancer Treatment: A Review.
        JAMA - J Am Med Assoc. 2019; 321: 288-300https://doi.org/10.1001/jama.2018.19323
        • Perou C.M.
        • Sørile T.
        • Eisen M.B.
        • Van De Rijn M.
        • Jeffrey S.S.
        • Ress C.A.
        • et al.
        Molecular portraits of human breast tumours.
        Nature. 2000; 406: 747-752https://doi.org/10.1038/35021093
      1. Robert NJ. Clinical efficacy of tamoxifen. Oncology, vol. 11, Oncology (Williston Park); 1997, p. 15–20.

        • Slamon D.
        Rationale for trastuzumab (Herceptin) in adjuvant breast cancer trials.
        Semin Oncol. 2001; 28: 13-19https://doi.org/10.1016/s0093-7754(01)90188-5
        • Slamon D.J.
        • Leyland-Jones B.
        • Shak S.
        • Fuchs H.
        • Paton V.
        • Bajamonde A.
        • et al.
        Use of Chemotherapy plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpresses HER2.
        N Engl J Med. 2001; 344: 783-792https://doi.org/10.1056/nejm200103153441101
        • Pegram M.D.
        • Lipton A.
        • Hayes D.F.
        • Weber B.L.
        • Baselga J.M.
        • Tripathy D.
        • et al.
        Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185(HER2/neu) monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment.
        J Clin Oncol. 1998; 16: 2659-2671https://doi.org/10.1200/JCO.1998.16.8.2659
        • Koboldt D.C.
        • Fulton R.S.
        • McLellan M.D.
        • Schmidt H.
        • Kalicki-Veizer J.
        • McMichael J.F.
        • et al.
        Comprehensive molecular portraits of human breast tumours.
        Nature. 2012; 490: 61-70https://doi.org/10.1038/nature11412
        • Navin N.
        • Kendall J.
        • Troge J.
        • Andrews P.
        • Rodgers L.
        • McIndoo J.
        • et al.
        Tumour evolution inferred by single-cell sequencing.
        Nature. 2011; 472: 90-95https://doi.org/10.1038/nature09807
        • Wang Y.
        • Waters J.
        • Leung M.L.
        • Unruh A.
        • Roh W.
        • Shi X.
        • et al.
        Clonal evolution in breast cancer revealed by single nucleus genome sequencing.
        Nature. 2014; 512: 155-160https://doi.org/10.1038/nature13600
        • Alexandrov L.B.
        • Nik-Zainal S.
        • Wedge D.C.
        • Aparicio S.A.J.R.
        • Behjati S.
        • Biankin A.V.
        • et al.
        Signatures of mutational processes in human cancer.
        Nature. 2013; 500: 415-421https://doi.org/10.1038/nature12477
        • Yates L.R.
        • Knappskog S.
        • Wedge D.
        • Farmery J.H.R.
        • Gonzalez S.
        • Martincorena I.
        • et al.
        Genomic Evolution of Breast Cancer Metastasis and Relapse.
        Cancer Cell. 2017; 32: 169-184.e7https://doi.org/10.1016/j.ccell.2017.07.005
        • Bertucci F.
        • Ng C.K.Y.
        • Patsouris A.
        • Droin N.
        • Piscuoglio S.
        • Carbuccia N.
        • et al.
        Genomic characterization of metastatic breast cancers.
        Nature. 2019; 569: 560-564https://doi.org/10.1038/s41586-019-1056-z
        • Bardia A.
        • Kaklamani V.
        • Wilks S.
        • Weise A.
        • Richards D.
        • Harb W.
        • et al.
        Phase I Study of Elacestrant (RAD1901), a Novel Selective Estrogen Receptor Degrader, in ER-Positive, HER2-Negative Advanced Breast Cancer.
        J Clin Oncol. 2021; https://doi.org/10.1200/jco.20.02272
        • Paoletti C.
        • Schiavon G.
        • Dolce E.M.
        • Darga E.P.
        • Hedley Carr T.
        • Geradts J.
        • et al.
        Circulating biomarkers and resistance to endocrine therapy in metastatic breast cancers: Correlative results from AZD9496 Oral SERD phase I trial.
        Clin Cancer Res. 2018; 24: 5860-5872https://doi.org/10.1158/1078-0432.CCR-18-1569
      2. Jhaveri K, Winer EP, Lim E, Fidalgo JA, Bellet M, Mayer IA, et al. Abstract PD7-05: A first-in-human phase I study to evaluate the oral selective estrogen receptor degrader (SERD), GDC-9545. In postmenopausal women with estrogen receptor-positive (ER +) HER2-negative (HER2 -) metastatic breast cancer . Cancer Res., vol. 80, American Association for Cancer Research (AACR); 2020, p. PD7-05-PD7-05. https://doi.org/10.1158/1538-7445.sabcs19-pd7-05.

        • Razavi P.
        • Chang M.T.
        • Xu G.
        • Bandlamudi C.
        • Ross D.S.
        • Vasan N.
        • et al.
        The Genomic Landscape of Endocrine-Resistant Advanced Breast Cancers.
        Cancer Cell. 2018; 34: 427-438.e6https://doi.org/10.1016/j.ccell.2018.08.008
        • Mao P.
        • Cohen O.
        • Kowalski K.J.
        • Kusiel J.G.
        • Buendia-Buendia J.E.
        • Cuoco M.S.
        • et al.
        Acquired FGFR and FGF Alterations Confer Resistance to Estrogen Receptor (ER) Targeted Therapy in ER + Metastatic Breast Cancer.
        Clin Cancer Res. 2020; 26: 5974-5989https://doi.org/10.1158/1078-0432.ccr-19-3958
        • Angus L.
        • Smid M.
        • Wilting S.M.
        • van Riet J.
        • Van Hoeck A.
        • Nguyen L.
        • et al.
        The genomic landscape of metastatic breast cancer highlights changes in mutation and signature frequencies.
        Nat Genet. 2019; 51: 1450-1458https://doi.org/10.1038/s41588-019-0507-7
        • Rinaldi J.
        • Sokol E.S.
        • Hartmaier R.J.
        • Trabucco S.E.
        • Frampton G.M.
        • Goldberg M.E.
        • et al.
        The genomic landscape of metastatic breast cancer: Insights from 11,000 tumors.
        PLoS ONE. 2020; 15e0231999https://doi.org/10.1371/journal.pone.0231999
        • Kreutzfeldt J.
        • Rozeboom B.
        • Dey N.
        • De P.
        The trastuzumab era: current and upcoming targeted HER2+ breast cancer therapies.
        Am J Cancer Res. 2020; 10: 1045-1067
      3. Coussens L, Yang-Feng TL, Liao YC, Chen E, Gray A, McGrath J, et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science (80-) 1985;230:1132–9. https://doi.org/10.1126/science.2999974.

        • Wolff A.C.
        • Elizabeth Hale Hammond M.
        • Allison K.H.
        • Harvey B.E.
        • Mangu P.B.
        • Bartlett J.M.S.
        • et al.
        Human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of American pathologists clinical practice guideline focused update.
        J Clin Oncol. 2018; 36: 2105-2122https://doi.org/10.1200/JCO.2018.77.8738
        • Tarantino P.
        • Hamilton E.
        • Tolaney S.M.
        • Cortes J.
        • Morganti S.
        • Ferraro E.
        • et al.
        HER2-Low breast cancer: Pathological and clinical landscape.
        J Clin Oncol. 2020; 38: 1951-1962https://doi.org/10.1200/JCO.19.02488
        • Proc L.N.-A.
        undefined. Overall survival (OS) advantage to simultaneous chemotherapy plus humanised anti HER2 monoclonal antibody Herceptin in HER2; Overexpressing.
        CiNiiAcJp n.d. 1999;
        • Romond E.H.
        • Perez E.A.
        • Bryant J.
        • Suman V.J.
        • Geyer C.E.
        • Davidson N.E.
        • et al.
        Trastuzumab plus Adjuvant Chemotherapy for Operable HER2-Positive Breast Cancer.
        N Engl J Med. 2005; 353: 1673-1684https://doi.org/10.1056/NEJMoa052122
        • Perez E.A.
        • Romond E.H.
        • Suman V.J.
        • Jeong J.H.
        • Sledge G.
        • Geyer C.E.
        • et al.
        Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2 - Positive breast cancer: Planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831.
        J Clin Oncol. 2014; 32: 3744-3752https://doi.org/10.1200/JCO.2014.55.5730
        • Slamon D.
        • Eiermann W.
        • Robert N.
        • Pienkowski T.
        • Martin M.
        • Press M.
        • et al.
        Adjuvant Trastuzumab in HER2-Positive Breast Cancer.
        N Engl J Med. 2011; 365: 1273-1283https://doi.org/10.1056/NEJMoa0910383
        • Tolaney S.M.
        • Barry W.T.
        • Dang C.T.
        • Yardley D.A.
        • Moy B.
        • Marcom P.K.
        • et al.
        Adjuvant Paclitaxel and Trastuzumab for Node-Negative, HER2-Positive Breast Cancer.
        N Engl J Med. 2015; 372: 134-141https://doi.org/10.1056/nejmoa1406281
        • Brown D.
        • Smeets D.
        • Székely B.
        • Larsimont D.
        • Marcell Szász A.
        • Adnet P.Y.
        • et al.
        Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations.
        Nat Commun. 2017; 8https://doi.org/10.1038/ncomms14944
        • Goldhirsch A.
        • Gelber R.D.
        • Piccart-Gebhart M.J.
        • De Azambuja E.
        • Procter M.
        • Suter T.M.
        • et al.
        2 years versus 1 year of adjuvant trastuzumab for HER2-positive breast cancer (HERA): An open-label, randomised controlled trial.
        Lancet. 2013; 382: 1021-1028https://doi.org/10.1016/S0140-6736(13)61094-6
        • Piccart-Gebhart M.J.
        • Procter M.
        • Leyland-Jones B.
        • Goldhirsch A.
        • Untch M.
        • Smith I.
        • et al.
        Trastuzumab after Adjuvant Chemotherapy in HER2-Positive Breast Cancer.
        N Engl J Med. 2005; 353: 1659-1672https://doi.org/10.1056/NEJMoa052306
        • Swain S.M.
        • Miles D.
        • Kim S.B.
        • Im Y.H.
        • Im S.A.
        • Semiglazov V.
        • et al.
        Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): end-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study.
        Lancet Oncol. 2020; 21: 519-530https://doi.org/10.1016/S1470-2045(19)30863-0
        • Bachelot T.
        • Ciruelos E.
        • Schneeweiss A.
        • Puglisi F.
        • Peretz-Yablonski T.
        • Bondarenko I.
        • et al.
        Preliminary safety and efficacy of first-line pertuzumab combined with trastuzumab and taxane therapy for HER2-positive locally recurrent or metastatic breast cancer (PERUSE).
        Ann Oncol. 2019; 30: 766-773https://doi.org/10.1093/annonc/mdz061
        • Gianni L.
        • Pienkowski T.
        • Im Y.H.
        • Tseng L.M.
        • Liu M.C.
        • Lluch A.
        • et al.
        5-year analysis of neoadjuvant pertuzumab and trastuzumab in patients with locally advanced, inflammatory, or early-stage HER2-positive breast cancer (NeoSphere): a multicentre, open-label, phase 2 randomised trial.
        Lancet Oncol. 2016; 17: 791-800https://doi.org/10.1016/S1470-2045(16)00163-7
        • von Minckwitz G.
        • Procter M.
        • de Azambuja E.
        • Zardavas D.
        • Benyunes M.
        • Viale G.
        • et al.
        Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer.
        N Engl J Med. 2017; 377: 122-131https://doi.org/10.1056/nejmoa1703643
        • Tarantino P.
        • Morganti S.
        • Uliano J.
        • Giugliano F.
        • Crimini E.
        • Curigliano G.
        Margetuximab for the treatment of HER2-positive metastatic breast cancer.
        Expert Opin Biol Ther. 2020; : 1-7https://doi.org/10.1080/14712598.2021.1856812
        • Rugo H.S.
        • Im S.A.
        • Cardoso F.
        • Cortés J.
        • Curigliano G.
        • Musolino A.
        • et al.
        Efficacy of Margetuximab vs Trastuzumab in Patients with Pretreated ERBB2-Positive Advanced Breast Cancer: A Phase 3 Randomized Clinical Trial.
        JAMA Oncol. 2021; https://doi.org/10.1001/jamaoncol.2020.7932
        • Bang Y.J.
        • Giaccone G.
        • Im S.A.
        • Oh D.Y.
        • Bauer T.M.
        • Nordstrom J.L.
        • et al.
        First-in-human phase 1 study of margetuximab (MGAH22), an Fc-modified chimeric monoclonal antibody, in patients with HER2-positive advanced solid tumors.
        Ann Oncol. 2017; 28: 855-861https://doi.org/10.1093/annonc/mdx002
        • von Minckwitz G.
        • Huang C.-S.
        • Mano M.S.
        • Loibl S.
        • Mamounas E.P.
        • Untch M.
        • et al.
        Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer.
        N Engl J Med. 2019; 380: 617-628https://doi.org/10.1056/NEJMoa1814017
        • Krop I.E.
        • Kim S.B.
        • Martin A.G.
        • LoRusso P.M.
        • Ferrero J.M.
        • Badovinac-Crnjevic T.
        • et al.
        Trastuzumab emtansine versus treatment of physician’s choice in patients with previously treated HER2-positive metastatic breast cancer (TH3RESA): final overall survival results from a randomised open-label phase 3 trial.
        Lancet Oncol. 2017; 18: 743-754https://doi.org/10.1016/S1470-2045(17)30313-3
        • Verma S.
        • Miles D.
        • Gianni L.
        • Krop I.E.
        • Welslau M.
        • Baselga J.
        • et al.
        Trastuzumab Emtansine for HER2-Positive Advanced Breast Cancer.
        N Engl J Med. 2012; 367: 1783-1791https://doi.org/10.1056/NEJMoa1209124
        • Diéras V.
        • Miles D.
        • Verma S.
        • Pegram M.
        • Welslau M.
        • Baselga J.
        • et al.
        Trastuzumab emtansine versus capecitabine plus lapatinib in patients with previously treated HER2-positive advanced breast cancer (EMILIA): a descriptive analysis of final overall survival results from a randomised, open-label, phase 3 trial.
        Lancet Oncol. 2017; 18: 732-742https://doi.org/10.1016/S1470-2045(17)30312-1
        • Modi S.
        • Park H.
        • Murthy R.K.
        • Iwata H.
        • Tamura K.
        • Tsurutani J.
        • et al.
        Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low–expressing advanced breast cancer: Results from a phase Ib study.
        J Clin Oncol. 2020; 38: 1887-1896https://doi.org/10.1200/JCO.19.02318
        • Graziani E.I.
        • Sung M.
        • Ma D.
        • Narayanan B.
        • Marquette K.
        • Puthenveetil S.
        • et al.
        PF-06804103, a site-specific Anti-HER2 antibody–drug conjugate for the treatment of HER2-expressing breast, gastric, and lung cancers.
        Mol Cancer Ther. 2020; 19: 2068-2078https://doi.org/10.1158/1535-7163.MCT-20-0237
        • Banerji U.
        • van Herpen C.M.L.
        • Saura C.
        • Thistlethwaite F.
        • Lord S.
        • Moreno V.
        • et al.
        Trastuzumab duocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: a phase 1 dose-escalation and dose-expansion study.
        Lancet Oncol. 2019; 20: 1124-1135https://doi.org/10.1016/S1470-2045(19)30328-6
        • Geyer C.E.
        • Forster J.
        • Lindquist D.
        • Chan S.
        • Romieu C.G.
        • Pienkowski T.
        • et al.
        Lapatinib plus Capecitabine for HER2-Positive Advanced Breast Cancer.
        N Engl J Med. 2006; 355: 2733-2743https://doi.org/10.1056/NEJMoa064320
        • Segovia-Mendoza M.
        • González-González M.E.
        • Barrera D.
        • Díaz L.
        • García-Becerra R.
        Efficacy and mechanism of action of the tyrosine kinase inhibitors gefitinib, lapatinib and neratinib in the treatment of her2-positive breast cancer: Preclinical and clinical evidence.
        Am J Cancer Res. 2015; 5: 2531-2561
        • Di Leo A.
        • Gomez H.L.
        • Aziz Z.
        • Zvirbule Z.
        • Bines J.
        • Arbushites M.C.
        • et al.
        Phase III, double-blind, randomized study comparing lapatinib plus paclitaxel with placebo plus paclitaxel as first-line treatment for metastatic breast cancer.
        J Clin Oncol. 2008; 26: 5544-5552https://doi.org/10.1200/JCO.2008.16.2578
        • Moreno-Aspitia A.
        • Holmes E.M.
        • Jackisch C.
        • De Azambuja E.
        • Boyle F.M.
        • Hillman D.W.
        • et al.
        Updated results from the phase III ALTTO trial (BIG 2–06; NCCTG (Alliance) N063D) comparing one year of anti-HER2 therapy with lapatinib alone (L), trastuzumab alone (T), their sequence (T→L) or their combination (L+T) in the adjuvant treatment of HER2-positive early breast cancer.
        J Clin Oncol. 2017; 35 (502-502)https://doi.org/10.1200/jco.2017.35.15_suppl.502
        • Huober J.
        • Holmes E.
        • Baselga J.
        • de Azambuja E.
        • Untch M.
        • Fumagalli D.
        • et al.
        Survival outcomes of the NeoALTTO study (BIG 1–06): updated results of a randomised multicenter phase III neoadjuvant clinical trial in patients with HER2-positive primary breast cancer.
        Eur J Cancer. 2019; 118: 169-177https://doi.org/10.1016/j.ejca.2019.04.038
        • Chan A.
        • Moy B.
        • Mansi J.
        • Ejlertsen B.
        • Holmes F.A.
        • Chia S.
        • et al.
        Final Efficacy Results of Neratinib in HER2-positive Hormone Receptor-positive Early-stage Breast Cancer From the Phase III ExteNET Trial.
        Clin Breast Cancer. 2021; 21: 80-91.e7https://doi.org/10.1016/j.clbc.2020.09.014
        • Saura C.
        • Oliveira M.
        • Feng Y.H.
        • Dai M.S.
        • Chen S.W.
        • Hurvitz S.A.
        • et al.
        Neratinib plus capecitabine versus lapatinib plus capecitabine in HER2-positive metastatic breast cancer previously treated with ≥ 2 HER2-directed regimens: Phase III NALA trial.
        J Clin Oncol. 2020; 38: 3138-3149https://doi.org/10.1200/JCO.20.00147
        • Murthy R.K.
        • Loi S.
        • Okines A.
        • Paplomata E.
        • Hamilton E.
        • Hurvitz S.A.
        • et al.
        Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer.
        N Engl J Med. 2020; 382: 597-609https://doi.org/10.1056/NEJMoa1914609
        • Xu B.
        • Yan M.
        • Ma F.
        • Hu X.
        • Feng J.
        • Ouyang Q.
        • et al.
        Pyrotinib plus capecitabine versus lapatinib plus capecitabine for the treatment of HER2-positive metastatic breast cancer (PHOEBE): a multicentre, open-label, randomised, controlled, phase 3 trial.
        Lancet Oncol. 2021; 22: 351-360https://doi.org/10.1016/s1470-2045(20)30702-6
        • Park Y.H.
        • Lee K.H.
        • Sohn J.H.
        • Lee K.S.
        • Jung K.H.
        • Kim J.H.
        • et al.
        A phase II trial of the pan-HER inhibitor poziotinib, in patients with HER2-positive metastatic breast cancer who had received at least two prior HER2-directed regimens: results of the NOV120101-203 trial.
        Int J Cancer. 2018; 143: 3240-3247https://doi.org/10.1002/ijc.31651
      4. Fehrenbacher L, Cecchini R, Geyer C, Rastogi P, Costantino J, Atkins J, et al. Abstract GS1-02: NSABP B-47 (NRG oncology): Phase III randomized trial comparing adjuvant chemotherapy with adriamycin (A) and cyclophosphamide (C) → weekly paclitaxel (WP), or docetaxel (T) and C with or without a year of trastuzumab (H) in women with node-positive or high-risk node-negative invasive breast cancer (IBC) expressing HER2 staining intensity of IHC 1+ or 2+ with negative FISH (HER2-Low IBC). Cancer Res., vol. 78, American Association for Cancer Research (AACR); 2018, p. GS1-02-GS1-02. https://doi.org/10.1158/1538-7445.sabcs17-gs1-02.

        • Yazaki S.
        • Hashimoto J.
        • Ogita S.
        • Nakano E.
        • Suzuki K.
        • Yamauchi T.
        Lower response to trastuzumab emtansine in metastatic breast cancer patients with human epidermal growth factor receptor 2 immunohistochemistry score of 2 and fluorescence in situ hybridization positive compared with immunohistochemistry score of 3: a retrospective study.
        Anticancer Drugs. 2020; 31: 973-978https://doi.org/10.1097/CAD.0000000000000939
        • Subramanian J.
        • Katta A.
        • Masood A.
        • Vudem D.R.
        • Kancha R.K.
        Emergence of ERBB2 Mutation as a Biomarker and an Actionable Target in Solid Cancers.
        Oncologist. 2019; 24: e1303-e1314https://doi.org/10.1634/theoncologist.2018-0845
        • Hyman D.M.
        • Piha-Paul S.A.
        • Won H.
        • Rodon J.
        • Saura C.
        • Shapiro G.I.
        • et al.
        HER kinase inhibition in patients with HER2-and HER3-mutant cancers.
        Nature. 2018; 554: 189-194https://doi.org/10.1038/nature25475
        • Ma C.X.
        • Bose R.
        • Gao F.
        • Freedman R.A.
        • Telli M.L.
        • Kimmick G.
        • et al.
        Neratinib efficacy and circulating tumor DNA detection of HER2 mutations in HER2 nonamplified metastatic breast cancer.
        Clin Cancer Res. 2017; 23: 5687-5695https://doi.org/10.1158/1078-0432.CCR-17-0900
        • Smit E.F.
        • Nakagawa K.
        • Nagasaka M.
        • Felip E.
        • Goto Y.
        • Li B.T.
        • et al.
        Trastuzumab deruxtecan (T-DXd; DS-8201) in patients with HER2-mutated metastatic non-small cell lung cancer (NSCLC): Interim results of DESTINY-Lung01.
        J Clin Oncol. 2020; 38 (9504-9504)https://doi.org/10.1200/jco.2020.38.15_suppl.9504
        • Araki K.
        • Miyoshi Y.
        Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer.
        Breast Cancer. 2018; 25: 392-401https://doi.org/10.1007/s12282-017-0812-x
        • Miller T.W.
        • Hennessy B.T.
        • González-Angulo A.M.
        • Fox E.M.
        • Mills G.B.
        • Chen H.
        • et al.
        Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer.
        J Clin Invest. 2010; 120: 2406-2413https://doi.org/10.1172/JCI41680
        • Fusco N.
        • Malapelle U.
        • Fassan M.
        • Marchiò C.
        • Buglioni S.
        • Zupo S.
        • et al.
        PIK3CA Mutations as a Molecular Target for Hormone Receptor-Positive, HER2-Negative Metastatic Breast Cancer. Front.
        Oncol. 2021; 11https://doi.org/10.3389/fonc.2021.644737
        • Martínez-Saéz O.
        • Chic N.
        • Pascual T.
        • Adamo B.
        • Vidal M.
        • González-Farré B.
        • et al.
        Frequency and spectrum of PIK3CA somatic mutations in breast cancer.
        Breast Cancer Res. 2020; 22https://doi.org/10.1186/s13058-020-01284-9
        • André F.
        • Ciruelos E.M.
        • Rubovszky G.
        • Campone M.
        • Loibl S.
        • Rugo H.S.
        • et al.
        + fulvestrant (FUL) for advanced breast cancer (ABC): Results of the phase III SOLAR-1 trial.
        Ann Oncol. 2018; 29: viii709https://doi.org/10.1093/annonc/mdy424.010
        • André F.
        • Ciruelos E.
        • Rubovszky G.
        • Campone M.
        • Loibl S.
        • Rugo H.S.
        • et al.
        Alpelisib for PIK3CA -Mutated, Hormone Receptor-Positive Advanced Breast Cancer.
        N Engl J Med. 2019; 380: 1929-1940https://doi.org/10.1056/nejmoa1813904
        • Baselga J.
        • Dent S.F.
        • Cortés J.
        • Im Y.-H.
        • Diéras V.
        • Harbeck N.
        • et al.
        Phase III study of taselisib (GDC-0032) + fulvestrant (FULV) v FULV in patients (pts) with estrogen receptor (ER)-positive, PIK3CA -mutant (MUT), locally advanced or metastatic breast cancer (MBC): Primary analysis from SANDPIPER.
        J Clin Oncol. 2018; 36 (LBA1006–LBA1006)https://doi.org/10.1200/jco.2018.36.18_suppl.lba1006
        • Di Leo A.
        • Johnston S.
        • Lee K.S.
        • Ciruelos E.
        • Lønning P.E.
        • Janni W.
        • et al.
        Buparlisib plus fulvestrant in postmenopausal women with hormone-receptor-positive, HER2-negative, advanced breast cancer progressing on or after mTOR inhibition (BELLE-3): a randomised, double-blind, placebo-controlled, phase 3 trial.
        Lancet Oncol. 2018; 19: 87-100https://doi.org/10.1016/S1470-2045(17)30688-5
        • Vuylsteke P.
        • Huizing M.
        • Petrakova K.
        • Roylance R.
        • Laing R.
        • Chan S.
        • et al.
        Pictilisib PI3Kinase inhibitor (a phosphatidylinositol 3-kinase [PI3K] inhibitor) plus paclitaxel for the treatment of hormone receptor-positive, HER2-negative, locally recurrent, or metastatic breast cancer: Interim analysis of the multicentre, placebo-controlled, phase II randomised PEGGY study.
        Ann Oncol. 2016; 27: 2059-2066https://doi.org/10.1093/annonc/mdw320
        • Lee Y.R.
        • Chen M.
        • Pandolfi P.P.
        The functions and regulation of the PTEN tumour suppressor: new modes and prospects.
        Nat Rev Mol Cell Biol. 2018; 19: 547-562https://doi.org/10.1038/s41580-018-0015-0
        • Keniry M.
        • Parsons R.
        The role of PTEN signaling perturbations in cancer and in targeted therapy.
        Oncogene. 2008; 27: 5477-5485https://doi.org/10.1038/onc.2008.248
        • Jones R.H.
        • Casbard A.
        • Carucci M.
        • Cox C.
        • Butler R.
        • Alchami F.
        • et al.
        Fulvestrant plus capivasertib versus placebo after relapse or progression on an aromatase inhibitor in metastatic, oestrogen receptor-positive breast cancer (FAKTION): a multicentre, randomised, controlled, phase 2 trial.
        Lancet Oncol. 2020; 21: 345-357https://doi.org/10.1016/S1470-2045(19)30817-4
        • Turner N.
        • Dent R.
        • O’Shaughnessy J.
        • Kim S.-B.
        • Isakoff S.
        • Barrios C.H.
        • et al.
        283MO Ipatasertib (IPAT) + paclitaxel (PAC) for PIK3CA/AKT1/PTEN-altered hormone receptor-positive (HR+) HER2-negative advanced breast cancer (aBC): Primary results from Cohort B of the IPATunity130 randomised phase III trial.
        Ann Oncol. 2020; 31: S354-S355https://doi.org/10.1016/j.annonc.2020.08.385
        • Kim S.B.
        • Maslyar D.J.
        • Dent R.
        • Im S.A.
        • Espié M.
        • Blau S.
        • et al.
        Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (LOTUS): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial.
        Lancet Oncol. 2017; 18: 1360-1372https://doi.org/10.1016/S1470-2045(17)30450-3
      5. Schmid P, Abraham J, Chan S, Wheatley D, Brunt AM, Nemsadze G, et al. Capivasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer: The PAKT trial. J. Clin. Oncol., vol. 38, American Society of Clinical Oncology; 2020, p. 423–33. https://doi.org/10.1200/JCO.19.00368.

        • Smyth L.M.
        • Zhou Q.
        • Nguyen B.
        • Yu C.
        • Lepisto E.M.
        • Arnedos M.
        • et al.
        Characteristics and outcome of AKT1E17K - mutant breast cancer defined through AACR project GENIE, a clinicogenomic registry.
        Cancer Discov. 2020; 10: 526-535https://doi.org/10.1158/2159-8290.CD-19-1209
        • Turner N.C.
        • Alarcón E.
        • Armstrong A.C.
        • Philco M.
        • López Chuken Y.A.
        • Sablin M.P.
        • et al.
        BEECH: A dose-finding run-in followed by a randomised phase II study assessing the efficacy of AKT inhibitor capivasertib (AZD5363) combined with paclitaxel in patients with estrogen receptor-positive advanced or metastatic breast cancer, and in a PIK3CA mutant sub-population.
        Ann Oncol. 2019; 30: 774-780https://doi.org/10.1093/annonc/mdz086
        • Hortobagyi G.N.
        • Chen D.
        • Piccart M.
        • Rugo H.S.
        • Burris H.A.
        • Pritchard K.I.
        • et al.
        Correlative Analysis of Genetic Alterations and Everolimus Benefit in Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2–Negative Advanced Breast Cancer: Results From BOLERO-2.
        J Clin Oncol. 2016; 34: 419-426https://doi.org/10.1200/JCO.2014.60.1971
        • Hyman D.M.
        • Smyth L.M.
        • Donoghue M.T.A.
        • Chang M.T.
        • Reichel J.B.
        • Bouvier N.
        • et al.
        AKT inhibition in solid tumors with AKT1 mutations.
        J Clin Oncol. 2017; 35: 2251-2259https://doi.org/10.1200/JCO.2017.73.0143
      6. Lord CJ, Ashworth A. PARP inhibitors: Synthetic lethality in the clinic. Science (80-) 2017;355:1152–8. https://doi.org/10.1126/science.aam7344.

        • Robson M.
        • Im S.-A.
        • Senkus E.
        • Xu B.
        • Domchek S.M.
        • Masuda N.
        • et al.
        Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation.
        N Engl J Med. 2017; 377: 523-533https://doi.org/10.1056/nejmoa1706450
        • Litton J.K.
        • Rugo H.S.
        • Ettl J.
        • Hurvitz S.A.
        • Gonçalves A.
        • Lee K.-H.
        • et al.
        Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation.
        N Engl J Med. 2018; 379: 753-763https://doi.org/10.1056/NEJMoa1802905
      7. IDMC has concluded that OlympiA trial of Lynparza crossed superiority boundary for invasive disease-free survival vs. placebo at planned interim analysis; n.d. https://www.astrazeneca.com/content/astraz/media-centre/press-releases/2021/olympia-trial-of-lynparza-idmc-recommend-early-analysis.html (accessed March 22, 2021).

        • Mohyuddin G.R.
        • Aziz M.
        • Britt A.
        • Wade L.
        • Sun W.
        • Baranda J.
        • et al.
        Similar response rates and survival with PARP inhibitors for patients with solid tumors harboring somatic versus Germline BRCA mutations: A Meta-analysis and systematic review.
        BMC Cancer. 2020; 20: 507https://doi.org/10.1186/s12885-020-06948-5
        • Patsouris A.
        • Tredan O.
        • Nenciu D.
        • Tran-Dien A.
        • Campion L.
        • Goncalves A.
        • et al.
        RUBY: A phase II study testing rucaparib in germline (g) BRCA wild-type patients presenting metastatic breast cancer (mBC) with homologous recombination deficiency (HRD).
        J Clin Oncol. 2019; 37 (1092-1092)https://doi.org/10.1200/jco.2019.37.15_suppl.1092
        • Tung N.M.
        • Robson M.E.
        • Ventz S.
        • Santa-Maria C.A.
        • Nanda R.
        • Marcom P.K.
        • et al.
        TBCRC 048: Phase II Study of Olaparib for Metastatic Breast Cancer and Mutations in Homologous Recombination-Related Genes.
        J Clin Oncol. 2020; 38: 4274-4282https://doi.org/10.1200/JCO.20.02151
        • Wu S.
        • Zhou J.
        • Zhang K.
        • Chen H.
        • Luo M.
        • Lu Y.
        • et al.
        Molecular Mechanisms of PALB2 Function and Its Role in Breast Cancer Management. Front.
        Oncol. 2020; 10https://doi.org/10.3389/fonc.2020.00301
        • Yang X.
        • Leslie G.
        • Doroszuk A.
        • Schneider S.
        • Allen J.
        • Decker B.
        • et al.
        Cancer risks associated with germline PALB2 pathogenic variants: An international study of 524 families.
        J Clin Oncol. 2020; 38: 674-685https://doi.org/10.1200/JCO.19.01907
        • Gruber J.J.
        • Afghahi A.
        • Hatton A.
        • Scott D.
        • McMillan A.
        • Ford J.M.
        • et al.
        Talazoparib beyond BRCA: A phase II trial of talazoparib monotherapy in BRCA1 and BRCA2 wild-type patients with advanced HER2-negative breast cancer or other solid tumors with a mutation in homologous recombination (HR) pathway genes.
        J Clin Oncol. 2019; 37 (3006-3006)https://doi.org/10.1200/jco.2019.37.15_suppl.3006
        • Gao J.
        • Aksoy B.A.
        • Dogrusoz U.
        • Dresdner G.
        • Gross B.
        • Sumer S.O.
        • et al.
        Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.
        Sci Signal. 2013; 6https://doi.org/10.1126/scisignal.2004088
        • Cerami E.
        • Gao J.
        • Dogrusoz U.
        • Gross B.E.
        • Sumer S.O.
        • Aksoy B.A.
        • et al.
        The cBio Cancer Genomics Portal: An open platform for exploring multidimensional cancer genomics data.
        Cancer Discov. 2012; 2: 401-404https://doi.org/10.1158/2159-8290.CD-12-0095
        • Chae Y.K.
        • Hong F.
        • Vaklavas C.
        • Cheng H.H.
        • Hammerman P.
        • Mitchell E.P.
        • et al.
        Phase II study of AZD4547 in patients with tumors harboring aberrations in the FGFR pathway: Results from the NCI-MATCH Trial (EAY131) subprotocol W.
        J Clin Oncol. 2020; 38: 2407-2417https://doi.org/10.1200/JCO.19.02630
        • Weaver A.
        • Bossaer J.B.
        Fibroblast growth factor receptor (FGFR) inhibitors: A review of a novel therapeutic class.
        J Oncol Pharm Pract. 2020; https://doi.org/10.1177/1078155220983425
        • Loriot Y.
        • Necchi A.
        • Park S.H.
        • Garcia-Donas J.
        • Huddart R.
        • Burgess E.
        • et al.
        Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma.
        N Engl J Med. 2019; 381: 338-348https://doi.org/10.1056/NEJMoa1817323
        • Abou-Alfa G.K.
        • Sahai V.
        • Hollebecque A.
        • Vaccaro G.
        • Melisi D.
        • Al-Rajabi R.
        • et al.
        Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study.
        Lancet Oncol. 2020; 21: 671-684https://doi.org/10.1016/S1470-2045(20)30109-1
      8. Pan-FGFR Tyrosine Kinase Inhibitor Treatment Is Less Effective in n.d. https://www.esmo.org/oncology-news/pan-fgfr-tyrosine-kinase-inhibitor-treatment-is-less-effective-in-patients-with-fgfr-amplifications?hit=mail-snews&utm_campaign=Scientific&utm_medium=email&_hsmi=117831407&_hsenc=p2ANqtz-_00kl9e_2hxD4KbHt_ZEkJVxN7Bva7s2SZAk2X0RD2J1IJHdWGDJ9Di0GZySdzJrwVPuFqvUNjKCkIrEQhUymBmEq1zA&utm_content=117831407&utm_source=hs_email (accessed March 25, 2021).

        • Turner N.
        • Pearson A.
        • Sharpe R.
        • Lambros M.
        • Geyer F.
        • Lopez-Garcia M.A.
        • et al.
        FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer.
        Cancer Res. 2010; 70: 2085-2094https://doi.org/10.1158/0008-5472.CAN-09-3746
        • Formisano L.
        • Lu Y.
        • Servetto A.
        • Hanker A.B.
        • Jansen V.M.
        • Bauer J.A.
        • et al.
        Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer.
        Nat Commun. 2019; 10: 1-14https://doi.org/10.1038/s41467-019-09068-2
        • Bahleda R.
        • Italiano A.
        • Hierro C.
        • Mita A.
        • Cervantes A.
        • Chan N.
        • et al.
        Multicenter phase I study of erdafitinib (JNJ-42756493), oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced or refractory solid tumors.
        Clin Cancer Res. 2019; 25: 4888-4897https://doi.org/10.1158/1078-0432.CCR-18-3334
        • Le D.T.
        • Uram J.N.
        • Wang H.
        • Bartlett B.R.
        • Kemberling H.
        • Eyring A.D.
        • et al.
        PD-1 Blockade in Tumors with Mismatch-Repair Deficiency.
        N Engl J Med. 2015; 372: 2509-2520https://doi.org/10.1056/NEJMoa1500596
        • Cortes-Ciriano I.
        • Lee S.
        • Park W.Y.
        • Kim T.M.
        • Park P.J.
        A molecular portrait of microsatellite instability across multiple cancers.
        Nat Commun. 2017; 8https://doi.org/10.1038/ncomms15180
        • Marabelle A.
        • Le D.T.
        • Ascierto P.A.
        • Di Giacomo A.M.
        • de Jesus-Acosta A.
        • Delord J.P.
        • et al.
        Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair–deficient cancer: Results from the phase II KEYNOTE-158 study.
        J Clin Oncol. 2020; 38: 1-10https://doi.org/10.1200/JCO.19.02105
        • Azad N.S.
        • Gray R.J.
        • Overman M.J.
        • Schoenfeld J.D.
        • Mitchell E.P.
        • Zwiebel J.A.
        • et al.
        Nivolumab Is Effective in Mismatch Repair-Deficient Noncolorectal Cancers: Results From Arm Z1D-A Subprotocol of the NCI-MATCH (EAY131) Study.
        J Clin Oncol. 2020; 38: 214-222https://doi.org/10.1200/JCO.19.00818
        • Solomon J.P.
        • Benayed R.
        • Hechtman J.F.
        • Ladanyi M.
        Identifying patients with NTRK fusion cancer.
        Ann Oncol. 2019; 30 (VIII16–22)https://doi.org/10.1093/annonc/mdz384
        • Hong D.S.
        • DuBois S.G.
        • Kummar S.
        • Farago A.F.
        • Albert C.M.
        • Rohrberg K.S.
        • et al.
        Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials.
        Lancet Oncol. 2020; 21: 531-540https://doi.org/10.1016/S1470-2045(19)30856-3
        • Doebele R.C.
        • Drilon A.
        • Paz-Ares L.
        • Siena S.
        • Shaw A.T.
        • Farago A.F.
        • et al.
        Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials.
        Lancet Oncol. 2020; 21: 271-282https://doi.org/10.1016/S1470-2045(19)30691-6
      9. Hyman D, Kummar S, Farago A, Geoerger B, Mau-Sorensen M, Taylor M, et al. Abstract CT127: Phase I and expanded access experience of LOXO-195 (BAY 2731954), a selective next-generation TRK inhibitor (TRKi). Cancer Res., vol. 79, American Association for Cancer Research (AACR); 2019, p. CT127–CT127. https://doi.org/10.1158/1538-7445.am2019-ct127.

        • Yarchoan M.
        • Albacker L.A.
        • Hopkins A.C.
        • Montesion M.
        • Murugesan K.
        • Vithayathil T.T.
        • et al.
        PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers.
        JCI Insight. 2019; 4https://doi.org/10.1172/jci.insight.126908
        • Marabelle A.
        • Fakih M.
        • Lopez J.
        • Shah M.
        • Shapira-Frommer R.
        • Nakagawa K.
        • et al.
        Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study.
        Lancet Oncol. 2020; 21: 1353-1365https://doi.org/10.1016/S1470-2045(20)30445-9
        • McGrail D.J.
        • Pilié P.G.
        • Rashid N.U.
        • Voorwerk L.
        • Slagter M.
        • Kok M.
        • et al.
        High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types.
        Ann Oncol. 2021; https://doi.org/10.1016/j.annonc.2021.02.006
        • Cheng L.
        • Lopez-Beltran A.
        • Massari F.
        • Maclennan G.T.
        • Montironi R.
        Molecular testing for BRAF mutations to inform melanoma treatment decisions: A move toward precision medicine.
        Mod Pathol. 2018; 31: 24-38https://doi.org/10.1038/modpathol.2017.104
        • Salama A.K.S.
        • Li S.
        • Macrae E.R.
        • Park J.I.
        • Mitchell E.P.
        • Zwiebel J.A.
        • et al.
        Dabrafenib and trametinib in patients with tumors with BRAFV600E mutations: Results of the NCI-MATCH trial subprotocol H.
        J Clin Oncol. 2020; 38: 3895-3904https://doi.org/10.1200/JCO.20.00762
        • Johnson D.B.
        • Zhao F.
        • Noel M.
        • Riely G.J.
        • Mitchell E.P.
        • Wright J.J.
        • et al.
        Trametinib activity in patients with solid tumors and lymphomas harboring braf non-V600 mutations or fusions: Results from NCI-MATCH (EAY131).
        Clin Cancer Res. 2020; 26: 1812-1819https://doi.org/10.1158/1078-0432.CCR-19-3443
        • Konopleva M.
        • Martinelli G.
        • Daver N.
        • Papayannidis C.
        • Wei A.
        • Higgins B.
        • et al.
        MDM2 inhibition: an important step forward in cancer therapy.
        Leukemia. 2020; 34: 2858-2874https://doi.org/10.1038/s41375-020-0949-z
        • Verlingue L.
        • Massard C.
        • Hollebecque A.
        • Alvarez E.C.
        • Postel-Vinay S.
        • Angevin E.
        • et al.
        Clinical efficacy of HER3 partners’ inhibitors in ERBB3 mutated cancer patients.
        Ann Oncol. 2016; 27: vi38https://doi.org/10.1093/annonc/mdw363.70
        • Finn R.S.
        • Crown J.P.
        • Lang I.
        • Boer K.
        • Bondarenko I.M.
        • Kulyk S.O.
        • et al.
        The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study.
        Lancet Oncol. 2015; 16: 25-35https://doi.org/10.1016/S1470-2045(14)71159-3
        • Hortobagyi G.N.
        • Stemmer S.M.
        • Burris H.A.
        • Yap Y.S.
        • Sonke G.S.
        • Paluch-Shimon S.
        • et al.
        Updated results from MONALEESA-2, a phase III trial of first-line ribociclib plus letrozole versus placebo plus letrozole in hormone receptor-positive, HER2-negative advanced breast cancer.
        Ann Oncol. 2018; 29: 1541-1547https://doi.org/10.1093/annonc/mdy155
        • Masuda H.
        • Zhang D.
        • Bartholomeusz C.
        • Doihara H.
        • Hortobagyi G.N.
        • Ueno N.T.
        Role of epidermal growth factor receptor in breast cancer.
        Breast Cancer Res Treat. 2012; 136: 331-345https://doi.org/10.1007/s10549-012-2289-9
        • Carey L.A.
        • Rugo H.S.
        • Marcom P.K.
        • Mayer E.L.
        • Esteva F.J.
        • Ma C.X.
        • et al.
        TBCRC 001: Randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer.
        J Clin Oncol. 2012; 30: 2615-2623https://doi.org/10.1200/JCO.2010.34.5579
        • Baselga J.
        • Gómez P.
        • Greil R.
        • Braga S.
        • Climent M.A.
        • Wardley A.M.
        • et al.
        Randomized phase II study of the anti-epidermal growth factor receptor monoclonal antibody cetuximab with cisplatin versus cisplatin alone in patients with metastatic triple-negative breast cancer.
        J Clin Oncol. 2013; 31: 2586-2592https://doi.org/10.1200/JCO.2012.46.2408
        • Cowherd S.
        • Miller L.D.
        • Melin S.A.
        • Akman S.
        • Isom S.
        • Cole J.
        • et al.
        A phase II clinical trial of weekly paclitaxel and carboplatin in combination with panitumumab in metastatic triple negative breast cancer.
        Cancer Biol Ther. 2015; 16: 678-683https://doi.org/10.1080/15384047.2015.1026481