Advertisement

Impact of high tumor mutational burden in solid tumors and challenges for biomarker application

      Highlights:

      • Detection of patients with cancer likely to respond to immunotherapy is crucial.
      • Tumor mutational burden (TMB) is an emerging prognostic and predictive biomarker.
      • Next generation sequencing provides TMB estimates in a more effective manner.
      • There are challenges to TMB adoption into standard clinical practice.
      • Validation of TMB alone or in combination models in prospective trials is warranted.

      Abstract

      Accurate identification of patients with solid tumors likely to respond to immunotherapy is crucial. Tumor mutational burden (TMB) measures the number of somatic mutations in a tumor and is an emerging prognostic and predictive biomarker for anti-programmed cell death (PD) 1/anti-PD-ligand 1 therapy and other immunotherapeutic agents. Tumor mutational burden is assessed optimally by whole exome sequencing, but next generation sequencing provides TMB estimates in a more timely and cost-effective manner. Blood-based measurement of TMB in plasma offers an alternative to the need for adequate tumor tissue for molecular testing, and has demonstrated the ability to identify patients who derive benefit from immunotherapy. Tumor mutational burden has diverse prognostic impact in different solid tumor types and also has a demonstrated role in predicting improved survival in patients receiving immunotherapy. There are challenges to TMB adoption into standard clinical practice, including variations in its definition, with the mutational number defining TMB-high appearing to vary across cancer types. The magnitude of TMB also varies across different tumor types, with the highest levels reported in melanoma and other skin cancers (where ultraviolet light is the dominant mutational process), followed by non-small cell lung cancer and other squamous carcinomas. Concerns regarding inter-laboratory and inter-platform variations in analysis methods have been raised, highlighting the need for standardization. Integration of other genomic or pathological biomarkers with TMB may increase its prognostic and predictive capabilities and validation of individual or combination models in prospective trials is warranted.

      Keywords

      To read this article in full you will need to make a payment
      ESMO Member Login
      Login with your ESMO username and password.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hodi F.S.
        • O’Day S.J.
        • McDermott D.F.
        • Weber R.W.
        • Sosman J.A.
        • Haanen J.B.
        • et al.
        Improved survival with ipilimumab in patients with metastatic melanoma.
        N Engl J Med. 2010; 363: 711-723https://doi.org/10.1056/NEJMoa1003466
        • Borghaei H.
        • Paz-Ares L.
        • Horn L.
        • Spigel D.R.
        • Steins M.
        • Ready N.E.
        • et al.
        Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer.
        N Engl J Med. 2015; 373: 1627-1639https://doi.org/10.1056/NEJMoa1507643
        • Rosenberg J.E.
        • Hoffman-Censits J.
        • Powles T.
        • van der Heijden M.S.
        • Balar A.V.
        • Necchi A.
        • et al.
        Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicenter, phase 2 trial.
        Lancet. 2016; 387: 1909-1920https://doi.org/10.1016/S0140-6736(16)00561-4
        • Motzer R.J.
        • Escudier B.
        • McDermott D.F.
        • George S.
        • Hammers H.J.
        • Srinivas S.
        • et al.
        Nivolumab versus everolimus in advanced renal-cell carcinoma.
        N Engl J Med. 2015; 373: 1803-1813https://doi.org/10.1056/NEJMoa1510665
        • Routy B.
        • Le Chatelier E.
        • Derosa L.
        • Duong C.P.M.
        • Alou M.T.
        • Daillere R.
        • et al.
        Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors.
        Science. 2018; 359: 91-97https://doi.org/10.1126/science.aan3706
        • Cao D.
        • Xu H.
        • Xu X.
        • Guo T.
        • Ge W.
        A reliable and feasible way to predict the benefits of ivolumab in patients with non-small cell lung cancer: a pooled analysis of 14 retrospective studies.
        Oncoimmunology. 2018; 7e1507262https://doi.org/10.1080/2162402X.2018.1507262
        • Gibney G.T.
        • Weiner L.M.
        • Atkins M.B.
        Predictive biomarkers for checkpoint inhibitor-based immunotherapy.
        Lancet Oncol. 2016; 17: e542-e551https://doi.org/10.1016/S1470-2045(16)30406-5
        • Postow M.A.
        • Sidlow R.
        • Hellmann D.
        Immune-related adverse events associated with immune checkpoint blockade.
        N Engl J Med. 2018; 378: 158-168https://doi.org/10.1056/NEJMra1703481
        • Le D.T.
        • Durham J.N.
        • Smith K.N.
        • Wang H.
        • Bartlett B.R.
        • Aulakh L.K.
        • et al.
        Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.
        Science. 2017; 357: 409-413https://doi.org/10.1126/science.aan6733
        • Reck M.
        • Rodriguez-Abreu D.
        • Robinson A.G.
        • Hui R.
        • Csőszi T.
        • Fülöp A.
        • et al.
        Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer.
        N Engl J Med. 2016; 375: 1823-1833
        • Muro K.
        • Chung H.C.
        • Shankaran V.
        • Geva R.
        • Catenacci D.
        • Gupta S.
        • et al.
        Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multi-centre, open-label, phase 1b trial.
        Lancet Oncol. 2016; 17: 717-726https://doi.org/10.1016/S1470-2045(16)00175-3
        • Fuchs C.S.
        • Doi T.
        • Jang R.W.
        • Muro K.
        • Satoh T.
        • Machado M.
        • et al.
        Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 Clinical KEYNOTE-059 Trial.
        JAMA Oncol. 2018; 4e180013https://doi.org/10.1001/jamaoncol.2018.0013
        • Bellmunt J.
        • de Wit R.
        • Vaughn D.J.
        • Fradet Y.
        • Lee J.L.
        • Fong L.
        • et al.
        Pembrolizumab as second-line therapy for advanced urothelial carcinoma.
        N Engl J Med. 2017; 376: 1015-1026https://doi.org/10.1056/NEJMoa1613683
        • Garon E.B.
        Cancer immunotherapy trials not immune from imprecise selection of patients.
        N Engl J Med. 2017; 376: 2483-2485https://doi.org/10.1056/NEJMe1705692
        • Topalian S.L.
        • Taube J.M.
        • Anders R.A.
        • Pardoll D.M.
        Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy.
        Nat Rev Cancer. 2016; 16: 275-287https://doi.org/10.1038/nrc.2016.36
        • Greillier L.
        • Tomasini P.
        • Barlesi F.
        The clinical utility of tumor mutational burden in non-small cell lung cancer.
        Transl Lung Cancer Res. 2018; 7: 639-646https://doi.org/10.21037/tlcr.2018.10.08
        • Steuer C.E.
        • Ramalingam S.S.
        Tumor mutation burden: leading immunotherapy to the era of precision medicine?.
        J Clin Oncol. 2018; 36: 631-632https://doi.org/10.1200/JCO.2017.76.8770
        • Yarchoan M.
        • Hopkins A.
        • Jaffee E.M.
        Tumor mutational burden and response rate to PD-1 inhibition.
        N Engl J Med. 2017; 377: 2500-2501https://doi.org/10.1056/NEJMc1713444
        • Chan T.A.
        • Yarchoan M.
        • Jaffee E.
        • Swanton C.
        • Quezada S.A.
        • Stenzinger A.
        • et al.
        Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic.
        Annals of Oncol. 2019; 30: 44-56https://doi.org/10.1093/annonc/mdy495
        • Friedlaender A.
        • Nouspikel T.
        • Christinat Y.
        • Ho L.
        • McKee T.
        • Addeo A.
        Tissue-plasma TMB comparison and plasma TMB monitoring in patients with metastatic non-small cell lung cancer receiving immune checkpoint inhibitors.
        Front Oncol. 2020; 10: 142https://doi.org/10.3389/fonc.2020.00142
        • Rizvi N.A.
        • Hellmann M.D.
        • Snyder A.
        • Kvistborg P.
        • Makarov V.
        • Havel J.J.
        • et al.
        Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer.
        Science. 2015; 348: 124-128https://doi.org/10.1126/science.aaa1348
        • Cristescu R.
        • Mogg R.
        • Ayers M.
        • Albright A.
        • Murphy E.
        • Yearley J.
        • et al.
        Pan-tumor genomic biomarkers for personalization of PD-1 checkpoint blockade-based immunotherapy.
        Science. 2018; 362: eaar3593https://doi.org/10.1126/science.aar3593
        • Johnson D.B.
        • Frampton G.M.
        • Rioth M.J.
        • Yusko E.
        • Xu Y.
        • Guo X.
        • et al.
        Targeted next generation sequencing identifies markers of response to PD-1 blockade.
        Cancer Immunol Res. 2016; 4: 959-967
        • Frampton G.M.
        • Fichtenholtz A.
        • Otto G.A.
        • Wang K.
        • Downing S.R.
        • He J.
        • et al.
        Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing.
        Nat Biotechnol. 2013; 31: 1023-1031https://doi.org/10.1038/nbt.2696
      1. US Food and Drug Administration. Summary of safety and effectiveness data (SSED): FoundationOne CDxTM. 2017. https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170019B.pdf.

        • Cheng D.T.
        • Mitchell T.N.
        • Zehir A.
        • Shah R.H.
        • Benayed R.
        • Syed A.
        • et al.
        Memorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology.
        J Mol Diagn. 2015; 17: 251-264https://doi.org/10.1016/j.jmoldx.2014.12.006
        • Samstein R.M.
        • Lee C.H.
        • Shoushtari A.N.
        • Hellman M.D.
        • Shen R.
        • Janjigian Y.Y.
        • et al.
        Tumor mutational load predicts survival after immunotherapy across multiple cancer types.
        Nat Genet. 2019; 51: 202-206https://doi.org/10.1038/s41588-018-0312-8
      2. Büttner R, Longshore JW, Lópes-Ríos F, Merkelbach-Bruse S, Normanno N, Rouleau E et al. Implementing TMB measurement in clinical practice: considerations on assay requirements. ESMO Open 2019;4:e000442. https://doi:10.1136/esmoopen-2018-000442.

        • Mankor J.M.
        • Paats M.S.
        • Groenendijk F.H.
        • Roepman P.
        • Dinjens W.N.M.
        • Dubbink H.J.
        • et al.
        Impact of panel design and cut-off on tumour mutational burden assessment in metastatic solid tumour samples.
        Br J Cancer. 2020; 122: 953-956https://doi.org/10.1038/s41416-020-0762-5
        • Lim C.
        • Tsao M.S.
        • Le L.W.
        • Shepherd F.A.
        • Feld R.
        • Burkes R.L.
        • et al.
        Biomarker testing and time to treatment decision in patients with advanced nonsmall-cell lung cancer.
        Ann Oncol. 2015; 26: 1415-1421https://doi.org/10.1093/annonc/mdv208
        • Zhang Y.
        • Chang L.
        • Yang Y.
        • Fang W.
        • Guan Y.
        • Wu A.
        • et al.
        The correlations of tumor mutational burden among single-region tissue, multi-region tissues and blood in non-small cell lung cancer.
        J Immunother Cancer. 2019; 7: 98https://doi.org/10.1186/s40425-019-0581-5
        • Gandara D.R.
        • Paul S.M.
        • Kowanetz M.
        • Schleifman E.
        • Zou W.
        • Li Y.
        • et al.
        Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab.
        Nat Med. 2018; 24: 1441-1448https://doi.org/10.1038/s41591-018-0134-3
        • Aggarwal C.
        • Thompson J.C.
        • Chien A.L.
        • Quinn K.J.
        • Hwang W.-T.
        • Black T.A.
        • Yee S.S.
        • Christensen T.E.
        • LaRiviere M.J.
        • Silva B.A.
        • Banks K.C.
        • Nagy R.J.
        • Helman E.
        • Berman A.T.
        • Ciunci C.A.
        • Singh A.P.
        • Wasser J.S.
        • Bauml J.M.
        • Langer C.J.
        • Cohen R.B.
        • Carpenter E.L.
        Baseline Plasma Tumor Mutation Burden Predicts Response to Pembrolizumab-based Therapy in Patients with Metastatic Non–Small Cell Lung Cancer.
        Clin Cancer Res. 2020; 26: 2354-2361https://doi.org/10.1158/1078-0432.CCR-19-3663
        • Kim S.T.
        • Cristescu R.
        • Bass A.J.
        • Kim K.M.
        • Odegaard J.I.
        • Kim K.
        • et al.
        Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer.
        Nat Med. 2018; 24: 1449-1458https://doi.org/10.1038/s41591-018-0101-z
        • Georgiadis A.
        • Durham J.N.
        • Keefer L.A.
        • Bartlett B.R.
        • Zielonka M.
        • Murphy D.
        • et al.
        Noninvasive detection of microsatellite instability and high tumor mutation burden in cancer patients treated with PD-1 blockade.
        Clin Cancer Res. 2019; 25: 7024-7034https://doi.org/10.1158/1078-0432.CCR-19-1372
        • Le D.T.
        • Uram J.N.
        • Wang H.
        • Bartlett B.R.
        • Kebmerling H.
        • Eyring A.D.
        • et al.
        PD-1 blockade in tumors with mismatch-repair deficiency.
        N Engl J Med. 2015; 372: 2509-2520https://doi.org/10.1056/NEJMoa1500596
        • Oldenhuis C.N.
        • Oosting S.F.
        • Gietema J.A.
        • de Vries E.G.
        Prognostic versus predictive value of biomarkers in oncology.
        Eur J Cancer. 2008; 44: 946-953https://doi.org/10.1016/j.ejca.2008.03.006
        • Owada-Ozaki Y.
        • Muto S.
        • Takagi H.
        • Inoue T.
        • Watanabe Y.
        • Fukuhara M.
        • et al.
        Prognostic impact of tumor mutation burden in patients with completely resected non-small cell lung cancer: brief report.
        J Thorac Oncol. 2018; 13: 1217-1221https://doi.org/10.1016/j.jtho.2018.04.003
        • Cao D.
        • Xu H.
        • Xu X.
        • Guo T.
        • Ge W.
        High tumor mutation burden predicts better efficacy of immunotherapy: a pooled analysis of 103078 cancer patients.
        Oncoimmunology. 2019; 8e1629258https://doi.org/10.1080/2162402X.2019.1629258
        • Wu H.X.
        • Wang Z.X.
        • Zhao Q.
        • Chen D.L.
        • He M.M.
        • Yang L.P.
        • et al.
        Tumor mutational and indel burden: a systematic pan-cancer evaluation as prognostic biomarkers.
        Ann Transl Med. 2019; 7: 640https://doi.org/10.21037/atm.2019.10.116
        • Snyder A.
        • Makarov V.
        • Merghoub T.
        • Yuan J.
        • Zaretsky J.M.
        • Desrichard A.
        • et al.
        Genetic basis for clinical response to CTLA-4 blockade in melanoma.
        N Engl J Med. 2014; 371: 2189-2199https://doi.org/10.1056/NEJMoa1406498
        • Panda A.
        • Betigeri A.
        • Subramanian K.
        • Ross J.S.
        • Pavlick D.C.
        • Ali S.
        • et al.
        Identifying a clinically applicable mutational burden threshold as a potential biomarker of response to immune checkpoint therapy in solid tumors. JCO Precis.
        Oncol. 2017; 2017https://doi.org/10.1200/PO.17.00146
        • Krieger T.
        • Pearson I.
        • Bell J.
        • Doherty J.
        • Robbins P.
        Targeted literature review on use of tumor mutational burden status and programmed cell death ligand 1 expression to predict outcomes of checkpoint inhibitor treatment.
        Diagn Pathol. 2020; 15: 6https://doi.org/10.1186/s13000-020-0927-9
        • Carbone D.P.
        • Reck M.
        • Paz-Ares L.
        • Creelan B.
        • Horn L.
        • Steins M.
        • et al.
        First-line nivolumab in stage IV or recurrent non-small-cell lung cancer.
        N Engl J Med. 2017; 376: 2415-2426https://doi.org/10.1056/NEJMoa1613493
        • Goodman A.M.
        • Kato S.
        • Bazhenova L.
        • Patel S.P.
        • Frampton G.M.
        • Miller V.
        • et al.
        Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers.
        Mol Cancer Ther. 2017; 16: 2598-2608https://doi.org/10.1158/1535-7163.MCT-17-0386
        • Rizvi H.
        • Sanchez-Vega F.
        • La K.
        • Chatila W.
        • Jonsson P.
        • Halpenny D.
        • et al.
        Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing.
        J Clin Oncol. 2018; 36: 633-641https://doi.org/10.1200/JCO.2017.75.3384
        • Hellmann M.D.
        • Ciuleanu T.E.
        • Pluzanski A.
        • Lee J.S.
        • Otterson G.A.
        • Audigier-Valette C.
        • et al.
        Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden.
        N Engl J Med. 2018; 378: 2093-2104https://doi.org/10.1056/NEJMoa1801946
        • Wood M.A.
        • Weeder B.R.
        • David J.K.
        • Nellore A.
        • Thompson R.F.
        Burden of tumor mutations, neoepitopes, and other variants are weak predictors of cancer immunotherapy response and overall survival.
        Genome Med. 2020; 12: 33https://doi.org/10.1186/s13073-020-00729-2
        • Alspach E.
        • Lussier D.M.
        • Miceli A.P.
        • Kizhvatov I.
        • DuPage M.
        • Luoma A.M.
        • et al.
        MHC-II neoantigens shape tumour immunity and response to immunotherapy.
        Nature. 2019; 574: 696-701https://doi.org/10.1038/s41586-019-1671-8
        • Anagnostou V.
        • Niknafs N.
        • Marrone K.
        • Bruhm D.C.
        • White J.R.
        • Naidoo J.
        • et al.
        Multimodal genomic features predict outcome of immune checkpoint blockade in non-small-cell lung cancer.
        Nature Cancer. 2020; 1: 99-111https://doi.org/10.1038/s43018-019-0008-8
        • Budczies J.
        • Kazdal D.
        • Allgauer M.
        • Christopoulos P.
        • Rempel E.
        • Pfarr N.
        • et al.
        Quantifying potential confounders of panel-based tumor mutational burden (TMB) measurement.
        Lung Cancer. 2020; 142: 114-119https://doi.org/10.1016/j.lungcan.2020.01.019
        • Cree I.A.
        • Deans Z.
        • Ligtenberg M.J.
        • Normanno N.
        • Edsjö A.
        • Rouleau E.
        • et al.
        Guidance for laboratories performing molecular pathology for cancer patients.
        J Clin Pathol. 2014; 67: 923-931https://doi.org/10.1136/jclinpath-2014-202404
        • Chalmers Z.R.
        • Connelly C.F.
        • Fabrizio D.
        • Gay L.
        • Ali S.M.
        • Ennis R.
        • et al.
        Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden.
        Genome Med. 2017; 9: 34https://doi.org/10.1186/s13073-017-0424-2
        • Alexandrov L.B.
        • Nik-Zainal S.
        • Wedge D.C.
        • Aparicio S.A.
        • Behjati S.
        • Biankin A.V.
        • et al.
        Signatures of mutational processes in human cancer.
        Nature. 2013; 500: 415-421https://doi.org/10.1038/nature12477
        • McNamara M.G.
        • Jacobs T.
        • Frizziero M.
        • Pihlak R.
        • Lamarca A.
        • Hubner R.A.
        • et al.
        Prognostic and predictive impact of high tumor mutation burden (TMB) in solid tumors: a systematic review and meta-analysis.
        Ann Oncol. 2019; 30: 5
        • Schnidrig D.
        • Turajlic S.
        • Litchfield K.
        Tumour mutational burden: primary versus metastatic tissue creates systematic bias.
        Immuno-Oncology Technology. 2019; 4: 8-14https://doi.org/10.1016/j.iotech.2019.11.003
        • Stenzinger A.
        • Endris V.
        • Budczies J.
        • Merkelbach-Bruse S.
        • Kazdal D.
        • Dietmaier W.
        • et al.
        Harmonization and standardization of panel-based tumor mutational burden (TMB) measurement: real-world results and recommendations of the QuIP study.
        J Thorac Oncol. 2020; S1556–0864: 30135https://doi.org/10.1016/j.jtho.2020.01.023
        • Buchhalter I.
        • Rempel E.
        • Endris V.
        • Allgauer M.
        • Neumann O.
        • Volckmar A.L.
        • et al.
        Size matters: dissecting key parameters for panel-based tumor mutational burden (TMB) analysis.
        Int J Cancer. 2019; 144: 848-858https://doi.org/10.1002/ijc.31878
        • Wu H.X.
        • Wang Z.X.
        • Zhao Q.
        • Wang F.
        • Xu R.H.
        Designing gene panels for tumor mutational burden estimation: the need to shift from “correlation” to “accuracy”.
        J Immunother Cancer. 2019; 7: 206https://doi.org/10.1186/s40425-019-0681-2
        • Merino D.M.
        • McShane L.M.
        • Fabrizio D.
        • Funari V.
        • Chen S.J.
        • White J.R.
        • et al.
        Establishing guidelines to harmonize tumor mutational burden (TMB): in silico assessment of variation in TMB quantification across diagnostic platforms: phase I of the friends of cancer research TMB harmonization project.
        J Immunother Cancer. 2020; 8e000147https://doi.org/10.1136/jitc-2019-000147
        • Yao L.
        • Fu Y.
        • Mohiyuddin M.
        • Lam H.Y.K.
        ecTMB: a robust method to estimate and classify tumor mutational burden.
        Sci Rep. 2020; 10: 4983https://doi.org/10.1038/s41598-020-61575-1
        • Blank C.U.
        • Haanen J.B.
        • Ribas A.
        • Schumacher T.N.
        Cancer Immunology. The ‘cancer immunogram’.
        Science. 2016; 352: 658-660https://doi.org/10.1126/science.aaf2834
        • Ott P.A.
        • Bang Y.J.
        • Piha-Paul S.A.
        • Razak A.R.A.
        • Bennouna J.
        • Soria J.C.
        • et al.
        T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028.
        J Clin Oncol. 2019; 37: 318-327https://doi.org/10.1200/JCO.2018.78.2276
      3. Chowell D, Morris LGT, Grigg CM, Weber JK, Samstein RM, Makarov V et al. Patient HLA class I genotype infuences cancer response to checkpoint blockade immunotherapy. Science 2018;359:582–7. https://doi:10.1126/science.aao4572.

        • Gopalakrishnan V.
        • Spencer C.N.
        • Nezi L.
        • Reuben A.
        • Andrews M.C.
        • Karpinets T.V.
        • et al.
        Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients.
        Science. 2018; 359: 97-103https://doi.org/10.1126/science.aan4236