Advertisement

Melanoma brain metastases – Interdisciplinary management recommendations 2020

      Highlights

      • MBM are common and are the major driving contributor to melanoma-related mortality.
      • Multiple clinical evidence gaps exist for MBM with few trials done prospectively.
      • Local therapy remains a relevant part of therapy in melanoma brain metastases (MBM).
      • Combined immune checkpoint blockade demonstrates very promising clinical activity.
      • MAPK-kinase inhibition is an option in rapidly progressing BRAFV600-mutated MBM.

      Abstract

      Melanoma brain metastases (MBM) are common and associated with a particularly poor prognosis; they directly cause death in 60–70% of melanoma patients. In the past, systemic treatments have shown response rates around 5%, whole brain radiation as standard of care has achieved a median overall survival of approximately three months. Recently, the combination of immune checkpoint inhibitors and combinations of MAP-kinase inhibitors both have shown very promising response rates of up to 55% and 58%, respectively, and improved survival. However, current clinical evidence is based on multi-cohort studies only, as prospectively randomized trials have been carried out rarely in MBM, independently whether investigating systemic therapy, radiotherapy or surgical techniques.
      Here, an interdisciplinary expert team reviewed the outcome of prospectively conducted clinical studies in MBM, identified evidence gaps and provided recommendations for the diagnosis, treatment, outcome evaluation and monitoring of MBM patients. The recommendations refer to four distinct scenarios: patients (i) with ‘brain-only’ disease, (ii) with oligometastatic asymptomatic intra- and extracranial disease, (iii) with multiple asymptomatic metastases, and (iv) with multiple symptomatic MBM or leptomeningeal disease.
      Changes in current management recommendations comprise the use of immunotherapy – preferably combined anti-CTLA-4/PD-1-immunotherapy – in asymptomatic MBM minus/plus stereotactic radiosurgery which remains the mainstay of local brain therapy being safe and effective. Adjuvant whole-brain radiotherapy provides no clinical benefit in oligometastatic MBM. Among the systemic therapies, combined MAPK-kinase inhibition provides, in BRAFV600-mutated patients with rapidly progressing or/and symptomatic MBM, an alternative to combined immunotherapy.

      Keywords

      To read this article in full you will need to make a payment
      ESMO Member Login
      Login with your ESMO username and password.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Schadendorf D.
        • van Akkooi A.C.J.
        • Berking C.
        • Griewank K.G.
        • Gutzmer R.
        • Hauschild A.
        • et al.
        Melanoma.
        Lancet. 2018; 392: 971-984https://doi.org/10.1016/S0140-6736(18)31559-9
        • Madajewicz S.
        • Karakousis C.
        • West C.R.
        • Caracandas J.
        • Avellanosa A.M.
        Malignant melanoma brain metastases. Review of Roswell Park Memorial Institute experience.
        Cancer. 1984; 53: 2550-2552https://doi.org/10.1002/1097-0142(19840601)53:11<2550::aid-cncr2820531129>3.0.co;2-b
        • Gaspar L.
        • Scott C.
        • Rotman M.
        • Asbell S.
        • Phillips T.
        • Wasserman T.
        • et al.
        Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials.
        Int J Radiat Oncol Biol Phys. 1997; 37: 745-751https://doi.org/10.1016/s0360-3016(96)00619-0
        • Fife K.M.
        • Colman M.H.
        • Stevens G.N.
        • Firth I.C.
        • Moon D.
        • Shannon K.F.
        • et al.
        Determinants of outcome in melanoma patients with cerebral metastases.
        J Clin Oncol. 2004; 22: 1293-1300https://doi.org/10.1200/JCO.2004.08.140
        • Davies M.A.
        • Liu P.
        • McIntyre S.
        • Kim K.B.
        • Papadopoulos N.
        • Hwu W.J.
        • et al.
        Prognostic factors for survival in melanoma patients with brain metastases.
        Cancer. 2011; 117: 1687-1696https://doi.org/10.1002/cncr.25634
        • Sperduto P.W.
        • Jiang W.
        • Brown P.D.
        • Braunstein S.
        • Sneed P.
        • Wattson D.A.
        • et al.
        Estimating survival in melanoma patients with brain metastases: an update of the graded prognostic assessment for melanoma using molecular markers (Melanoma-molGPA).
        Int J Radiat Oncol Biol Phys. 2017; 99: 812-816https://doi.org/10.1016/j.ijrobp.2017.06.2454
        • Amaral T.
        • Kiecker F.
        • Schäfer S.
        • Stege H.
        • Kaehler K.C.
        • Terheyden P.
        • et al.
        Combined immunotherapy with nivolumab and ipilimumab with and without local therapy in patients with melanoma brain metastasis: a DeCOG* study in 380 patients.
        J Immounther Cancer. 2020; 8 (pii: e000333)https://doi.org/10.1136/jitc-2019-000333
        • Guckenberger M.
        • Lievens Y.
        • Bouma A.B.
        • Collette L.
        • Dekker A.
        • deSouza N.M.
        • et al.
        Characterisation and classification of oligometastatic disease: a European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus recommendation.
        Lancet Oncol. 2020; 21: e18-e28https://doi.org/10.1016/S1470-2045(19)30718-1
        • Tawbi H.A.
        • Forsyth P.A.
        • Algazi A.
        • Hamid O.
        • Hodi F.S.
        • Moschos S.J.
        • et al.
        Combined Nivolumab and Ipilimumab in Melanoma Metastatic to the Brain.
        N Engl J Med. 2018; 379: 722-730https://doi.org/10.1056/NEJMoa1805453
        • Tawbi H.A.
        • Forsyth P.A.
        • Hodi F.S.
        • Lao C.D.
        • Moschos S.J.
        • Hamid O.
        • et al.
        Efficacy and safety of the combination of nivolumab (NIVO) plus ipilimumab (IPI) in patients with symptomatic melanoma brain metastases (CheckMate 204).
        J Clin Oncol. 2019; 37: 9501https://doi.org/10.1200/JCO.2019.37.15_supp.9501
        • Long G.V.
        • Atkinson V.
        • Lo S.
        • Sandhu S.
        • Guminski A.D.
        • Brown M.P.
        • et al.
        Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: a multicentre randomised phase 2 study.
        Lancet Oncol. 2018; 19: 672-681https://doi.org/10.1016/S1470-2045(18)30139-6
        • Kluger H.M.
        • Chiang V.
        • Mahajan A.
        • Zito C.R.
        • Sznol M.
        • Tran T.
        • et al.
        Long-term survival of patients with melanoma with active brain metastases treated with pembrolizumab on a phase II trial.
        J Clin Oncol. 2019; 37: 52-60https://doi.org/10.1200/JCO.18.00204
        • Goldberg S.B.
        • Gettinger S.N.
        • Mahajan A.
        • Chiang A.C.
        • Herbst R.S.
        • Sznol M.
        • et al.
        Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial.
        Lancet Oncol. 2016; 17: 976-983https://doi.org/10.1016/S1470-2045(16)30053-5
        • Di Giacomo A.M.
        • Ascierto P.A.
        • Pilla L.
        • Santinami M.
        • Ferrucci P.F.
        • Giannarelli D.
        • et al.
        Ipilimumab and fotemustine in patients with advanced melanoma (NIBIT-M1): an open-label, single-arm phase 2 trial.
        Lancet Oncol. 2012; 13: 879-886https://doi.org/10.1016/S1470-2045(12)70324-8
        • Margolin K.
        • Ernstoff M.S.
        • Hamid O.
        • Lawrence D.
        • McDermott D.
        • Puzanov I.
        • et al.
        Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial.
        Lancet Oncol. 2012; 13: 459-465https://doi.org/10.1016/S1470-2045(12)70090-6
        • Davies M.A.
        • Saiag P.
        • Robert C.
        • Grob J.J.
        • Flaherty K.T.
        • Arance A.
        • et al.
        Dabrafenib plus trametinib in patients with BRAFV600-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial.
        Lancet Oncol. 2017; 18: 863-873https://doi.org/10.1016/S1470-2045(17)30429-1
        • Long G.V.
        • Trefzer U.
        • Davies M.A.
        • Kefford R.F.
        • Ascierto P.A.
        • Chapman P.B.
        • et al.
        Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial.
        Lancet Oncol. 2012; 13: 1087-1095https://doi.org/10.1016/S1470-2045(12)70431-X
        • McArthur G.A.
        • Maio M.
        • Arance A.
        • Nathan P.
        • Blank C.
        • Avril M.F.
        • et al.
        Vemurafenib in metastatic melanoma patients with brain metastases: an open-label, single-arm, phase 2, multicentre study.
        Ann Oncol. 2017; 28: 634-641https://doi.org/10.1093/annonc/mdw641
        • Dummer R.
        • Goldinger S.M.
        • Turtschi C.P.
        • Eggmann N.B.
        • Michielin O.
        • Mitchell L.
        • et al.
        Vemurafenib in patients with BRAF(V600) mutation-positive melanoma with symptomatic brain metastases: final results of an open-label pilot study.
        Eur J Cancer. 2014; 50: 611-621https://doi.org/10.1016/j.ejca.2013.11.002
        • Schadendorf D.
        • Hauschild A.
        • Ugurel S.
        • Thoelke A.
        • Egberts F.
        • Kreissig M.
        • et al.
        Dose-intensified bi-weekly temozolomide in patients with asymptomatic brain metastases from malignant melanoma: a phase II DeCOG/ADO study.
        Ann Oncol. 2006; 17: 1592-1597https://doi.org/10.1093/annonc/mdl148
        • Agarwala S.S.
        • Kirkwood J.M.
        • Gore M.
        • Dreno B.
        • Thatcher N.
        • Czarnetski B.
        • et al.
        Temozolomide for the treatment of brain metastases associated with metastatic melanoma: a phase II study.
        J Clin Oncol. 2004; 22: 2101-2107https://doi.org/10.1200/JCO.2004.11.044
        • Avril M.F.
        • Aamdal S.
        • Grob J.J.
        • Hauschild A.
        • Mohr P.
        • Bonerandi J.J.
        • et al.
        Fotemustine compared with dacarbazine in patients with disseminated malignant melanoma: a phase III study.
        J Clin Oncol. 2004; 22: 1118-1125https://doi.org/10.1200/JCO.2004.04.165
        • Jacquillat C.
        • Khayat D.
        • Banzet P.
        • Weil M.
        • Fumoleau P.
        • Avril M.F.
        • et al.
        Final report of the French multicenter phase II study of the nitrosourea fotemustine in 153 evaluable patients with disseminated malignant melanoma including patients with cerebral metastases.
        Cancer. 1990; 66: 1873-1878https://doi.org/10.1002/1097-0142(19901101)66:9<1873::aid-cncr2820660904>3.0.co;2-5
        • Hauswald H.
        • Bernhardt D.
        • Krug D.
        • Katayama S.
        • Habl G.
        • Lorenzo Bermejo J.
        • et al.
        Whole-brain helical tomotherapy with integrated boost for brain metastases in patients with malignant melanoma - final results of the BRAIN-RT trial.
        Cancer Manag Res. 2019; 11: 4669-4676https://doi.org/10.2147/CMAR.S204729
        • Lopez-Martin J.A.
        • Arance A.M.
        • De La Cruz-Merino L.
        • Illescas A.
        • Valduvieco I.
        • Berrocal A.
        • et al.
        Ipilimumab and radiation in patients with unresectable melanoma brain metastases: A multicenter, open label, phase-2, Spanish Melanoma Group (GEM) study (NCT-2013-001132-22).
        J Clin Oncol. 2018; 36: 9546https://doi.org/10.1200/JCO.2018.36.15_suppl.9546
        • Mornex F.
        • Thomas L.
        • Mohr P.
        • Hauschild A.
        • Delaunay M.M.
        • Lesimple T.
        • et al.
        A prospective randomized multicentre phase III trial of fotemustine plus whole brain irradiation versus fotemustine alone in cerebral metastases of malignant melanoma.
        Melanoma Res. 2003; 13: 97-103https://doi.org/10.1097/00008390-200302000-00016
        • Hong A.M.
        • Fogarty G.B.
        • Dolven-Jacobsen K.
        • Burmeister B.H.
        • Lo S.N.
        • Haydu L.E.
        • et al.
        Adjuvant whole-brain radiation therapy compared with observation after local treatment of melanoma brain metastases: a multicenter, randomized phase III trial.
        J Clin Oncol. 2019; 37: 3132-3141
        • Raizer J.J.
        • Hwu W.J.
        • Panageas K.S.
        • Wilton A.
        • Baldwin D.E.
        • Bailey E.
        • et al.
        Brain and leptomeningeal metastases from cutaneous melanoma: survival outcomes based on clinical features.
        Neuro Oncol. 2008; 10: 199-207https://doi.org/10.1215/15228517-2007-058
        • Eigentler T.K.
        • Figl A.
        • Krex D.
        • Mohr P.
        • Mauch C.
        • Rass K.
        • et al.
        Number of metastases, serum lactate dehydrogenase level, and type of treatment are prognostic factors in patients with brain metastases of malignant melanoma.
        Cancer. 2011; 117: 1697-1703https://doi.org/10.1002/cncr.25631
        • Gempt J.
        • Gerhardt J.
        • Toth V.
        • Hüttinger S.
        • Ryang Y.M.
        • Wostrack M.
        • et al.
        Postoperative ischemic changes following brain metastasis resection as measured by diffusion-weighted magnetic resonance imaging.
        J Neurosurg. 2013; 119: 1395-1400https://doi.org/10.3171/2013.9.JNS13596
        • Kellogg R.G.
        • Straus D.C.
        • Choi M.
        • Chaudhry T.A.
        • Diaz A.Z.
        • Muñoz L.F.
        Stereotactic radiosurgery boost to the resection cavity for cerebral metastases: Report of overall survival, complications, and corticosteroid protocol.
        Surg Neurol Int. 2013; 4: S436-S442https://doi.org/10.4103/2152-7806.121632
        • Obermueller T.
        • Schaeffner M.
        • Gerhardt J.
        • Meyer B.
        • Ringel F.
        • Krieg S.M.
        Risks of postoperative paresis in motor eloquently and non-eloquently located brain metastases.
        BMC Cancer. 2014; 14: 21https://doi.org/10.1186/1471-2407-14-21
        • Kocher M.
        • Soffietti R.
        • Abacioglu U.
        • Villà S.
        • Fauchon F.
        • Baumert B.G.
        • et al.
        Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952–26001 study.
        J Clin Oncol. 2011; 29: 134-141https://doi.org/10.1200/JCO.2010.30.1655
        • Mahajan A.
        • Ahmed S.
        • McAleer M.F.
        • Weinberg J.S.
        • Li J.
        • Brown P.
        • et al.
        Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: a single-centre, randomised, controlled, phase 3 trial.
        Lancet Oncol. 2017; 18: 1040-1048https://doi.org/10.1016/S1470-2045(17)30414-X
        • Brown P.D.
        • Ballman K.V.
        • Cerhan J.H.
        • Anderson S.K.
        • Carrero X.W.
        • Whitton A.C.
        • et al.
        Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): a multicentre, randomised, controlled, phase 3 trial.
        Lancet Oncol. 2017; 18: 1049-1060https://doi.org/10.1016/S1470-2045(17)30441-2
        • Akanda Z.Z.
        • Hong W.
        • Nahavandi S.
        • Haghighi N.
        • Phillips C.
        • Kok D.L.
        Post-operative stereotactic radiosurgery following excision of brain metastases: A systematic review and meta-analysis.
        Radiother Oncol. 2020; 142: 27-35https://doi.org/10.1016/j.radonc.2019.08.024
        • Chang E.L.
        • Wefel J.S.
        • Hess K.R.
        • Allen P.K.
        • Lang F.F.
        • Kornguth D.G.
        • et al.
        Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial.
        Lancet Oncol. 2009; 10: 1037-1044https://doi.org/10.1016/S1470-2045(09)70263-3
        • Tallet A.V.
        • Azria D.
        • Barlesi F.
        • Spano J.P.
        • Carpentier A.F.
        • Gonçalves A.
        • et al.
        Neurocognitive function impairment after whole brain radiotherapy for brain metastases: actual assessment.
        Radiat Oncol. 2012; 7: 77https://doi.org/10.1186/1748-717X-7-77
        • Brown P.D.
        • Jaeckle K.
        • Ballman K.V.
        • Farace E.
        • Cerhan J.H.
        • Anderson S.K.
        • et al.
        Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: a randomized clinical trial.
        JAMA. 2016; 316: 401-409https://doi.org/10.1001/jama.2016.9839
        • Patchell R.A.
        • Tibbs P.A.
        • Walsh J.W.
        • Dempsey R.J.
        • Maruyama Y.
        • Kryscio R.J.
        • et al.
        A randomized trial of surgery in the treatment of single metastases to the brain.
        N Engl J Med. 1990; 322: 494-500https://doi.org/10.1056/NEJM199002223220802
        • Vecht C.J.
        • Haaxma-Reiche H.
        • Noordijk E.M.
        • Padberg G.W.
        • Voormolen J.H.
        • Hoekstra F.H.
        • et al.
        Treatment of single brain metastasis: radiotherapy alone or combined with neurosurgery?.
        Ann Neurol. 1993; 33: 583-590https://doi.org/10.1002/ana.410330605
        • Mintz A.H.
        • Kestle J.
        • Rathbone M.P.
        • Gaspar L.
        • Hugenholtz H.
        • Fisher B.
        • et al.
        A randomized trial to assess the efficacy of surgery in addition to radiotherapy in patients with a single cerebral metastasis.
        Cancer. 1996; 78: 1470-1476https://doi.org/10.1002/(sici)1097-0142(19961001)78:7<1470::aid-cncr14>3.0.co;2-x
        • Patchell R.A.
        • Tibbs P.A.
        • Regine W.F.
        • Dempsey R.J.
        • Mohiuddin M.
        • Kryscio R.J.
        • et al.
        Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial.
        JAMA. 1998; 280: 1485-1489https://doi.org/10.1001/jama.280.17.1485
        • Yu C.
        • Chen J.C.
        • Apuzzo M.L.
        • O'Day S.
        • Giannotta S.L.
        • Weber J.S.
        • et al.
        Metastatic melanoma to the brain: prognostic factors after gamma knife radiosurgery.
        Int J Radiat Oncol Biol Phys. 2002; 52: 1277-1287https://doi.org/10.1016/s0360-3016(01)02772-9
        • Manon R.
        • O'Neill A.
        • Knisely J.
        • Werner-Wasik M.
        • Lazarus H.M.
        • Wagner H.
        • et al.
        Phase II trial of radiosurgery for one to three newly diagnosed brain metastases from renal cell carcinoma, melanoma, and sarcoma: an Eastern Cooperative Oncology Group study (E 6397).
        J Clin Oncol. 2005; 23: 8870-8876https://doi.org/10.1200/JCO.2005.01.8747
        • Aoyama H.
        • Shirato H.
        • Tago M.
        • Nakagawa K.
        • Toyoda T.
        • Hatano K.
        • et al.
        Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial.
        JAMA. 2006; 295: 2483-2491https://doi.org/10.1001/jama.295.21.2483
        • Prabhu R.S.
        • Press R.H.
        • Patel K.R.
        • Boselli D.M.
        • Symanowski J.T.
        • Lankford S.P.
        • et al.
        Single-fraction stereotactic radiosurgery (SRS) alone versus surgical resection and SRS for large brain metastases: a multi-institutional analysis.
        Int J Radiat Oncol Biol Phys. 2017; 99: 459-467https://doi.org/10.1016/j.ijrobp.2017.04.006
        • Minniti G.
        • Paolini S.
        • D'Andrea G.
        • Lanzetta G.
        • Cicone F.
        • Confaloni V.
        • et al.
        Outcomes of postoperative stereotactic radiosurgery to the resection cavity versus stereotactic radiosurgery alone for melanoma brain metastases.
        J Neurooncol. 2017; 132: 455-462https://doi.org/10.1007/s11060-017-2394-z
        • Matsunaga S.
        • Shuto T.
        • Yamamoto M.
        • Yomo S.
        • Kondoh T.
        • Kobayashi T.
        • et al.
        Gamma knife radiosurgery for metastatic brain tumors from malignant melanomas: a japanese multi-institutional cooperative and retrospective cohort study (JLGK1501).
        Stereotact Funct Neurosurg. 2018; 96: 162-171https://doi.org/10.1159/000489948
        • Zimmer L.
        • Livingstone E.
        • Hassel J.C.
        • Fluck M.
        • Eigentler T.
        • Loquai C.
        • et al.
        Adjuvant Nivolumab and Ipilimumab or Nivolumab versus Placebo in resected Stage IV melanoma with no evidence of disease (IMMUNED): a randomised, double-blind, phase 2 trial.
        Lancet. 2020; 395: 1558-1568https://doi.org/10.1016/S0140-6736(20)30417-7
      1. Han EY, Wang H, Luo D, Li J, Wang X. Dosimetric comparison of fractionated radiosurgery plans using frameless Gamma Knife ICON and CyberKnife systems with linear accelerator-based radiosurgery plans for multiple large brain metastases. J Neurosurg 2019;5:1-7. doi: 10.3171/2019.1.JNS182769.

        • Amaral T.
        • Tampouri I.
        • Eigentler T.
        • Keim U.
        • Klumpp B.
        • Heinrich V.
        • et al.
        Immunotherapy plus surgery/radiosurgery is associated with favorable survival in patients with melanoma brain metastasis.
        Immunotherapy. 2019; 11: 297-309https://doi.org/10.2217/imt-2018-0149
        • Alvarez-Breckenridge C.
        • Giobbie-Hurder A.
        • Gill C.M.
        • Bertalan M.
        • Stocking J.
        • Kaplan A.
        • et al.
        Upfront surgical resection of melanoma brain metastases provides a bridge toward immunotherapy-mediated systemic control.
        Oncologist. 2019; 24: 671-679https://doi.org/10.1634/theoncologist.2018-0306
        • Yamamoto M.
        • Serizawa T.
        • Shuto T.
        • Akabane A.
        • Higuchi Y.
        • Kawagishi J.
        • et al.
        Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study.
        Lancet Oncol. 2014; 15: 387-395https://doi.org/10.1016/S1470-2045(14)70061-0
      2. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF): Diagnostik, Therapie und Nachsorge des Melanoms, Langversion 3.2, 2019, AWMF Registernummer: 032/024OL, http://www.leitlinienprogramm-onkologie.de/leitlinien/melanom/ [accessed Feb 26, 2020].

      3. Coit DG, Thompson JA, Albertini MR, Barker C, Carson WE, Contreras C, et al. Cutaneous Melanoma, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2019;17:367–402. doi: 10.6004/jnccn.2019.0018.

      4. Hong A, Taing C, Long G, Carlino M, Shivalingam B, Cancer council australia melanoma guidelines working party. When is radiation therapy indicated for patients with distant brain metastases? https://wiki.cancer.org.au/australiawiki/index.php?oldid=199467 [accessed Feb 26, 2020].

        • Michielin O.
        • van Akkooi A.C.J.
        • Ascierto P.A.
        • Dummer R.
        • Keilholz U.
        ESMO Guidelines Committee. Cutaneous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†.
        Ann Oncol. 2019; 30: 1884-1901https://doi.org/10.1093/annonc/mdz411
        • Brown P.D.
        • Gondi V.
        • Pugh S.
        • Tome W.A.
        • Wefel J.S.
        • Armstrong T.S.
        • et al.
        Hippocampal avoidance during whole-brain radiotherapy plus memantine for patients with brain metastases: phase III Trial NRG Oncology CC001.
        J Clin Oncol. 2020; 38: 1019-1029https://doi.org/10.1200/JCO.19.02767
        • Le Rhun E.
        • Taillibert S.
        • Chamberlain M.C.
        Carcinomatous meningitis: Leptomeningeal metastases in solid tumors.
        Surg Neurol Int. 2013; 4: S265-S288https://doi.org/10.4103/2152-7806.111304
        • Ferguson S.D.
        • Bindal S.
        • Bassett Jr, R.L.
        • Haydu L.E.
        • McCutcheon I.E.
        • Heimberger A.B.
        • et al.
        Predictors of survival in metastatic melanoma patients with leptomeningeal disease (LMD).
        J Neurooncol. 2019; 142: 499-509https://doi.org/10.1007/s11060-019-03121-2. doi: 10.1111/pcmr.12771
        • Eroglu Z.
        • Holmen S.L.
        • Chen Q.
        • Khushalani N.I.
        • Amaravadi R.
        • Thomas R.
        • et al.
        Melanoma central nervous system metastases: An update to approaches, challenges, and opportunities.
        Pigment Cell Melanoma Res. 2019; 32: 458-469https://doi.org/10.1111/pcmr.12771
        • Chen G.
        • Chakravarti N.
        • Aardalen K.
        • Lazar A.J.
        • Tetzlaff M.T.
        • Wubbenhorst B.
        • et al.
        Molecular profiling of patient-matched brain and extracranial melanoma metastases implicates the PI3K pathway as a therapeutic target.
        Clin Cancer Res. 2014; 20: 5537-5546https://doi.org/10.1158/1078-0432.CCR-13-3003
        • Niessner H.
        • Forschner A.
        • Klumpp B.
        • Honegger J.B.
        • Witte M.
        • Bornemann A.
        • et al.
        Targeting hyperactivation of the AKT survival pathway to overcome therapy resistance of melanoma brain metastases.
        Cancer Med. 2013; 2: 76-85https://doi.org/10.1158/1078-0432.CCR-13-3003
        • Ciminera A.K.
        • Jandial R.
        • Termini J.
        Metabolic advantages and vulnerabilities in brain metastases.
        Clin Exp Metastasis. 2017; 34: 401-410https://doi.org/10.1007/s10585-017-9864-8
        • Gopal Y.N.
        • Rizos H.
        • Chen G.
        • Deng W.
        • Frederick D.T.
        • Cooper Z.A.
        • et al.
        Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1α and oxidative phosphorylation in melanoma.
        Cancer Res. 2014; 74: 7037-7047https://doi.org/10.1158/0008-5472.CAN-14-1392
        • Palmieri D.
        • Fitzgerald D.
        • Shreeve S.M.
        • Hua E.
        • Bronder J.L.
        • Weil R.J.
        • et al.
        Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis.
        Mol Cancer Res. 2009; 7: 1438-1445https://doi.org/10.1158/1541-7786.MCR-09-0234
        • Glitza I.C.
        • Smalley K.S.M.
        • Brastianos P.K.
        • Davies M.A.
        • McCutcheon I.
        • Liu J.K.C.
        • et al.
        Leptomeningeal disease in melanoma patients: An update to treatment, challenges, and future directions.
        Pigment Cell Melanoma Res. 2020; 33: 527-541https://doi.org/10.1111/pcmr.12861
        • Sakji-Dupré L.
        • Le Rhun E.
        • Templier C.
        • Desmedt E.
        • Blanchet B.
        • Mortier L.
        Cerebrospinal fluid concentrations of vemurafenib in patients treated for brain metastatic BRAF-V600 mutated melanoma.
        Melanoma Res. 2015; 25: 302-305https://doi.org/10.1158/1541-7786.MCR-09-0234
        • Glitza I.C.
        • Phillips S.
        • Brown C.
        • Haymaker C.L.
        • Bassett R.L.
        • Lee J.
        • et al.
        Single-center phase I/Ib study of concurrent intrathecal (IT) and intravenous (IV) nivolumab (N) for metastatic melanoma (MM) patients (pts) with leptomeningeal disease (LMD).
        J Clin Oncol. 2020; 38: 10008https://doi.org/10.1200/JCO.2020.38.15_suppl.10008
        • Glitza I.C.
        • Rohlfs M.
        • Guha-Thakurta N.
        • Bassett Jr, R.L.
        • Bernatchez C.
        • Diab A.
        • et al.
        Retrospective review of metastatic melanoma patients with leptomeningeal disease treated with intrathecal interleukin-2.
        ESMO Open. 2018; 3e000283https://doi.org/10.1136/esmoopen-2017-000283
        • Arbour K.C.
        • Mezquita L.
        • Long N.
        • Rizvi H.
        • Auclin E.
        • Ni A.
        • et al.
        Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer.
        J Clin Oncol. 2018; 36: 2872-2878https://doi.org/10.1200/JCO.2018.79.0006
        • Fucà G.
        • Galli G.
        • Poggi M.
        • Lo Russo G.
        • Proto C.
        • Imbimbo M.
        • et al.
        Modulation of peripheral blood immune cells by early use of steroids and its association with clinical outcomes in patients with metastatic non-small cell lung cancer treated with immune checkpoint inhibitors.
        ESMO Open. 2019; 4e000457https://doi.org/10.1136/esmoopen-2018-000457
        • Levin V.A.
        • Bidaut L.
        • Hou P.
        • Kumar A.J.
        • Wefel J.S.
        • Bekele B.N.
        • et al.
        Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system.
        Int J Radiat Oncol Biol Phys. 2011; 79: 1487-1495https://doi.org/10.1016/j.ijrobp.2009.12.061
        • Ricciuti B.
        • Dahlberg S.E.
        • Adeni A.
        • Sholl L.M.
        • Nishino M.
        • Awad M.M.
        Immune checkpoint inhibitor outcomes for patients with non-small-cell lung cancer receiving baseline corticosteroids for palliative versus nonpalliative indications.
        J Clin Oncol. 2019; 37: 1927-1934https://doi.org/10.1200/JCO.19.00189
        • Petrelli F.
        • Signorelli D.
        • Ghidini M.
        • Ghidini A.
        • Pizzutilo E.G.
        • Ruggieri L.
        • et al.
        Association of steroids use with survival in patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis.
        Cancers (Basel). 2020; 12: pii: E546https://doi.org/10.1200/JCO.19.00189
        • Ahmed K.A.
        • Abuodeh Y.A.
        • Echevarria M.I.
        • Arrington J.A.
        • Stallworth D.G.
        • Hogue C.
        • et al.
        Clinical outcomes of melanoma brain metastases treated with stereotactic radiosurgery and anti-PD-1 therapy, anti-CTLA-4 therapy, BRAF/MEK inhibitors, BRAF inhibitor, or conventional chemotherapy.
        Ann Oncol. 2016; 27: 2288-2294https://doi.org/10.1093/annonc/mdw417
        • Rauschenberg R.
        • Bruns J.
        • Brütting J.
        • Daubner D.
        • Lohaus F.
        • Zimmer L.
        • et al.
        Impact of radiation, systemic therapy and treatment sequencing on survival of patients with melanoma brain metastases.
        Eur J Cancer. 2019; 110: 11-20https://doi.org/10.1016/j.ejca.2018.12.023
        • Tétu P.
        • Allayous C.
        • Oriano B.
        • Dalle S.
        • Mortier L.
        • Leccia M.T.
        • et al.
        Impact of radiotherapy administered simultaneously with systemic treatment in patients with melanoma brain metastases within MelBase, a French multicentric prospective cohort.
        Eur J Cancer. 2019; 112: 38-46https://doi.org/10.1016/j.ejca.2019.02.009
        • Weber J.
        • Mandala M.
        • Del Vecchio M.
        • Gogas H.J.
        • Arance A.M.
        • Cowey C.L.
        • et al.
        Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma.
        N Engl J Med. 2017; 377: 1824-1835https://doi.org/10.1056/NEJMoa1709030
        • Shannan B.
        • Matschke J.
        • Chauvistré H.
        • Vogel F.
        • Klein D.
        • Meier F.
        • et al.
        Sequence-dependent cross-resistance of combined radiotherapy plus BRAFV600E inhibition in melanoma.
        Eur J Cancer. 2019; 109: 137-153https://doi.org/10.1016/j.ejca.2018.12.024
        • Pfannenstiel L.W.
        • McNeilly C.
        • Xiang C.
        • Kang K.
        • Diaz-Montero C.M.
        • Yu J.S.
        • et al.
        Combination PD-1 blockade and irradiation of brain metastasis induces an effective abscopal effect in melanoma.
        Oncoimmunology. 2018; 8e1507669https://doi.org/10.1016/j.ejca.2018.12.024
        • Fischer G.M.
        • Jalali A.
        • Kircher D.A.
        • Lee W.C.
        • McQuade J.L.
        • Haydu L.E.
        • et al.
        Molecular profiling reveals unique immune and metabolic features of melanoma brain metastases.
        Cancer Discov. 2019; 9: 628-645https://doi.org/10.1016/j.ejca.2018.12.024
        • Franceschini D.
        • Franzese C.
        • Navarria P.
        • Ascolese A.M.
        • De Rose F.
        • Del Vecchio M.
        • et al.
        Radiotherapy and immunotherapy: Can this combination change the prognosis of patients with melanoma brain metastases?.
        Cancer Treat Rev. 2016; 50: 1-8https://doi.org/10.1016/j.ctrv.2016.08.003
        • Chandra R.A.
        • Wilhite T.J.
        • Balboni T.A.
        • Alexander B.M.
        • Spektor A.
        • Ott P.A.
        • et al.
        A systematic evaluation of abscopal responses following radiotherapy in patients with metastatic melanoma treated with ipilimumab.
        Oncoimmunology. 2015; 4e1046028https://doi.org/10.1080/2162402X.2015.1046028
        • Ngwa W.
        • Irabor O.C.
        • Schoenfeld J.D.
        • Hesser J.
        • Demaria S.
        • Formenti S.C.
        Using immunotherapy to boost the abscopal effect.
        Nat Rev Cancer. 2018; 18: 313-322https://doi.org/10.1038/nrc.2018.6
        • Knispel S.
        • Stang A.
        • Zimmer L.
        • Lax H.
        • Gutzmer R.
        • Heinzerling L.
        • et al.
        Impact of a preceding radiotherapy on the outcome of immune checkpoint inhibition in metastatic melanoma: a multicenter retrospective cohort study of the DeCOG.
        J Immunother Cancer. 2020; 8 (pii: e000395)https://doi.org/10.1136/jitc-2019-000395
        • Anker C.J.
        • Grossmann K.F.
        • Atkins M.B.
        • Suneja G.
        • Tarhini A.A.
        • Kirkwood J.M.
        Avoiding severe toxicity from combined BRAF inhibitor and radiation treatment: consensus guidelines from the eastern cooperative oncology group (ECOG).
        Int J Radiat Oncol Biol Phys. 2016; 95: 632-646https://doi.org/10.1016/j.ijrobp.2016.01.038
        • Pires da Silva I.
        • Glitza I.C.
        • Haydu L.E.
        • Johnpulle R.
        • Banks P.D.
        • Grass G.D.
        • et al.
        Incidence, features and management of radionecrosis in melanoma patients treated with cerebral radiotherapy and anti-PD-1 antibodies.
        Pigment Cell Melanoma Res. 2019; 32: 553-563https://doi.org/10.1111/pcmr.12775
        • Le Rhun E.
        • Dhermain F.
        • Vogin G.
        • Reyns N.
        • Metellus P.
        Radionecrosis after stereotactic radiotherapy for brain metastases.
        Expert Rev Neurother. 2016; 16: 903-914https://doi.org/10.1080/14737175.2016.1184572
        • Burton E.M.
        • Amaria R.N.
        • Glitza I.C.
        • Shephard M.
        • Diab A.
        • Milton D.
        • et al.
        Safety and efficacy of triplett combination of nivolumab (N) with dabrafenib (D) and trametinib (T) [TRIDeNT] in patients with BRAF-mutated metastatic melanoma: a single center phase II study.
        Ann Oncol. 2019; 30_suppl 5: v533-v563https://doi.org/10.1093/annonc/mdz255
        • Gutzmer R.
        • Stroyakovskiy D.
        • Gogas H.
        • Robert C.
        • Lewis K.
        • Protsenko S.
        • et al.
        Atezolizumab, vemurafenib, and cobimetinib as first-line treatment for unresectable advanced BRAFV600 mutation-positive melanoma (IMspire150): primary analysis of the randomised, double-blind, placebo-controlled, phase 3 trial.
        Lancet. 2020; 395: 1835-1844https://doi.org/10.1016/S0140-6736(20)30934-X
        • Ascierto P.A.
        • Robert C.
        • Lewis K.D.
        • Munhoz R.
        • Liszkay G.
        • et al.
        Time to central nervous system (CNS) metastases (mets) with atezolizumab (A) or placebo (P) combined with cobimetinib (C) + vemurafenib (V) in the phase III IMspire150 study.
        J Clin Oncol. 2020; 38: 10023https://doi.org/10.1200/JCO.2020.38.15_suppl.10023
        • Galldiks N.
        • Kocher M.
        • Ceccon G.
        • Werner J.M.
        • Brunn A.
        • Deckert M.
        • et al.
        Imaging challenges of immunotherapy and targeted therapy in patients with brain metastases: Response, Progression, and Pseudoprogression.
        Neuro Oncol. 2019; Aug 22 (pii: noz147)https://doi.org/10.1093/neuonc/noz147
        • Eisenhauer E.A.
        • Therasse P.
        • Bogaerts J.
        • Schwartz L.H.
        • Sargent D.
        • Ford R.
        • et al.
        New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1).
        Eur J Cancer. 2009; 45: 228-247https://doi.org/10.1016/j.ejca.2008.10.026
        • Wolchok J.D.
        • Hoos A.
        • O'Day S.
        • Weber J.S.
        • Hamid O.
        • Lebbé C.
        • et al.
        Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria.
        Clin Cancer Res. 2009; 15: 7412-7420https://doi.org/10.1158/1078-0432.CCR-09-1624
        • Therasse P.
        • Eisenhauer E.A.
        • Verweij J.
        RECIST revisited: a review of validation studies on tumour assessment.
        Eur J Cancer. 2006; 42: 1031-1039https://doi.org/10.1016/j.ejca.2006.01.026
        • Lin N.U.
        • Lee E.Q.
        • Aoyama H.
        • Barani I.J.
        • Barboriak D.P.
        • Baumert B.G.
        • et al.
        Response Assessment in Neuro-Oncology (RANO) group. Response assessment criteria for brain metastases: proposal from the RANO group.
        Lancet Oncol. 2015; 16: e270-e278https://doi.org/10.1016/S1470-2045(15)70057-4
        • Wen P.Y.
        • Macdonald D.R.
        • Reardon D.A.
        • Cloughesy T.F.
        • Sorensen A.G.
        • Galanis E.
        • et al.
        Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group.
        J Clin Oncol. 2010; 28: 1963-1972https://doi.org/10.1200/JCO.2009.26.3541
        • Chamberlain M.
        • Junck L.
        • Brandsma D.
        • Soffietti R.
        • Rudà R.
        • Raizer J.
        • et al.
        Leptomeningeal metastases: a RANO proposal for response criteria.
        Neuro Oncol. 2017; 19: 484-492
      5. Bohnsack O, Hoos A, Ludajic K. Adaptation and modification of the immune related response criteria (IRRC): IrRECIST. J Clin Oncol 2014;32:15_suppl, e22121. doi: 10.1200/jco,2014.32.15_suppl.e22121.

        • Hodi F.S.
        • Ballinger M.
        • Lyons B.
        • Soria J.C.
        • Nishino M.
        • Tabernero J.
        • et al.
        Immune-modified response evaluation criteria in solid tumors (imRECIST): refining guidelines to assess the clinical benefit of cancer immunotherapy.
        J Clin Oncol. 2018; 36: 850-858https://doi.org/10.1200/JCO.2017.75.1644
        • Seymour L.
        • Bogaerts J.
        • Perrone A.
        • Ford R.
        • Schwartz L.H.
        • Mandrekar S.
        • et al.
        RECIST working group. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics.
        Lancet Oncol. 2017; 18: e143-e152https://doi.org/10.1016/S1470-2045(17)30074-8
        • Okada H.
        • Weller M.
        • Huang R.
        • Finocchiaro G.
        • Gilbert M.R.
        • Wick W.
        • et al.
        Immunotherapy response assessment in neuro-oncology: a report of the RANO working group.
        Lancet Oncol. 2015; 16: e534-e542https://doi.org/10.1016/S1470-2045(15)00088-1
        • Robert C.
        • Grob J.J.
        • Stroyakovskiy D.
        • Karaszewska B.
        • Hauschild A.
        • Levchenko E.
        • et al.
        Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma.
        N Engl J Med. 2019; 381: 626-636https://doi.org/10.1056/NEJMoa1904059
        • Larkin J.
        • Chiarion-Sileni V.
        • Gonzalez R.
        • Grob J.J.
        • Rutkowski P.
        • Lao C.D.
        • et al.
        Five-year survival with combined nivolumab and ipilimumab in advanced melanoma.
        N Engl J Med. 2019; 381: 1535-1546https://doi.org/10.1056/NEJMoa1910836
        • Scatena C.
        • Franceschi S.
        • Franzini M.
        • Sanguinetti C.
        • Romiti N.
        • Caponi L.
        • et al.
        Dabrafenib and Trametinib prolong coagulation through the inhibition of tissue factor in BRAFv600e mutated melanoma cells in vitro.
        Cancer Cell Int. 2019; 19: 223https://doi.org/10.1186/s12935-019-0938-3
        • Long G.V.
        • Stroyakovskiy D.
        • Gogas H.
        • Levchenko E.
        • de Braud F.
        • Larkin J.
        • et al.
        Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial.
        Lancet. 2015; 386: 444-451https://doi.org/10.1016/S0140-6736(15)60898-4
        • Robert C.
        • Karaszewska B.
        • Schachter J.
        • Rutkowski P.
        • Mackiewicz A.
        • Stroiakovski D.
        • et al.
        Improved overall survival in melanoma with combined dabrafenib and trametinib.
        N Engl J Med. 2015; 372: 30-39https://doi.org/10.1056/NEJMoa1412690
        • Cuzzubbo S.
        • Javeri F.
        • Tissier M.
        • Roumi A.
        • Barlog C.
        • Doridam J.
        • et al.
        Neurological adverse events associated with immune checkpoint inhibitors: Review of the literature.
        Eur J Cancer. 2017; 73: 1-8https://doi.org/10.1016/j.ejca.2016.12.001
        • Patel K.R.
        • Chowdhary M.
        • Switchenko J.M.
        • Kudchadkar R.
        • Lawson D.H.
        • Cassidy R.J.
        • et al.
        BRAF inhibitor and stereotactic radiosurgery is associated with an increased risk of radiation necrosis.
        Melanoma Res. 2016; 26: 387-394https://doi.org/10.1097/CMR.0000000000000268
        • Colaco R.J.
        • Martin P.
        • Kluger H.M.
        • Yu J.B.
        • Chiang V.L.
        Does immunotherapy increase the rate of radiation necrosis after radiosurgical treatment of brain metastases?.
        J Neurosurg. 2016; 125: 17-23https://doi.org/10.3171/2015.6.JNS142763
        • Nardin C.
        • Mateus C.
        • Texier M.
        • Lanoy E.
        • Hibat-Allah S.
        • Ammari S.
        • et al.
        Tolerance and outcomes of stereotactic radiosurgery combined with anti-programmed cell death-1 (pembrolizumab) for melanoma brain metastases.
        Melanoma Res. 2018; 28: 111-119https://doi.org/10.1097/CMR.0000000000000413
        • Vellayappan B.
        • Tan C.L.
        • Yong C.
        • Khor L.K.
        • Koh W.Y.
        • Yeo T.T.
        • et al.
        Diagnosis and management of radiation necrosis in patients with brain metastases.
        Front Oncol. 2018; 8: 395https://doi.org/10.3389/fonc.2018.00395
        • Kebir S.
        • Rauschenbach L.
        • Galldiks N.
        • Schlaak M.
        • Hattingen E.
        • Landsberg J.
        • et al.
        Dynamic O-(2-[18F]fluoroethyl)-L-tyrosine PET imaging for the detection of checkpoint inhibitor-related pseudoprogression in melanoma brain metastases.
        Neuro Oncol. 2016; 18: 1462-1464https://doi.org/10.1093/neuonc/now154
        • Alomari A.K.
        • Cohen J.
        • Vortmeyer A.O.
        • Chiang A.
        • Gettinger S.
        • Goldberg S.
        • et al.
        Possible interaction of anti-PD-1 therapy with the effects of radiosurgery on brain metastases.
        Cancer Immunol Res. 2016; 4: 481-487
        • Parvez K.
        • Parvez A.
        • Zadeh G.
        The diagnosis and treatment of pseudoprogression, radiation necrosis and brain tumor recurrence.
        Int J Mol Sci. 2014; 15: 11832-11846https://doi.org/10.1158/2326-6066.CIR-15-0238
        • Larkin J.
        • Chiarion-Sileni V.
        • Gonzalez R.
        • Grob J.J.
        • Cowey C.L.
        • et al.
        Combined nivolumab and ipilimumab or monotherapy in untreated melanoma.
        N Engl J Med. 2015; 373: 23-34https://doi.org/10.1056/NEJMoa1504030
        • Eigentler T.K.
        • Hassel J.C.
        • Berking C.
        • Aberle J.
        • Bachmann O.
        • Grünwald V.
        • et al.
        Diagnosis, monitoring and management of immune-related adverse drug reactions of anti-PD-1 antibody therapy.
        Cancer Treat Rev. 2016; 45: 7-18https://doi.org/10.1016/j.ctrv.2016.02.003
        • Hassel J.C.
        • Heinzerling L.
        • Aberle J.
        • Bähr O.
        • Eigentler T.K.
        • Grimm M.O.
        • et al.
        Combined immune checkpoint blockade (anti-PD-1/anti-CTLA-4): Evaluation and management of adverse drug reactions.
        Cancer Treat Rev. 2017; 57: 36-49https://doi.org/10.1016/j.ctrv.2017.05.003
        • Heinzerling L.
        • Eigentler T.K.
        • Fluck M.
        • Hassel J.C.
        • Heller-Schenck D.
        • Leipe J.
        • et al.
        Tolerability of BRAF/MEK inhibitor combinations: adverse event evaluation and management.
        ESMO Open. 2019; 4e000491https://doi.org/10.1136/esmoopen-2019-000491
        • Miller D.
        • Zappala V.
        • El Hindy N.
        • Livingstone E.
        • Schadendorf D.
        • Sure U.
        • et al.
        Intracerebral metastases of malignant melanoma and their recurrences–a clinical analysis.
        Clin Neurol Neurosurg. 2013; 115: 1721-1728https://doi.org/10.1016/j.clineuro.2013.03.019
        • Wroński M.
        • Arbit E.
        Surgical treatment of brain metastases from melanoma: a retrospective study of 91 patients.
        J Neurosurg. 2000; 93: 9-18https://doi.org/10.3171/jns.2000.93.1.0009
        • Gaudy-Marqueste C.
        • Dussouil A.S.
        • Carron R.
        • Troin L.
        • Malissen N.
        • Loundou A.
        • et al.
        Survival of melanoma patients treated with targeted therapy and immunotherapy after systematic upfront control of brain metastases by radiosurgery.
        Eur J Cancer. 2017; 84: 44-54https://doi.org/10.1016/j.ejca.2017.07.017
        • McTyre E.R.
        • Soike M.H.
        • Farris M.
        • Ayala-Peacock D.N.
        • Hepel J.T.
        • Page B.R.
        • et al.
        Multi-institutional validation of brain metastasis velocity, a recently defined predictor of outcomes following stereotactic radiosurgery.
        Radiother Oncol. 2020; (pii: S0167-8140(19)33057-9)https://doi.org/10.1016/j.radonc.2019.08.011
        • Armocida D.
        • Marzetti F.
        • Pesce A.
        • Caporlingua A.
        • D'Angelo L.
        • Santoro A.
        Purely meningeal intracranial relapse of melanoma brain metastases after surgical resection and immunotherapy as a unique disease progression pattern: our experience and review of the literature.
        World Neurosurgery. 2019; 134: 150-154https://doi.org/10.1016/j.wneu.2019.10.101
        • McDonald M.A.
        • Sanghvi P.
        • Bykowski J.
        • Daniels G.A.
        Unmasking of intracranial metastatic melanoma during ipilimumab/nivolumab therapy: case report and literature review.
        BMC Cancer. 2018; 18: 549https://doi.org/10.1186/s12885-018-4470-y
        • Holbrook K.
        • Lutzky J.
        • Davies M.A.
        • Davis J.M.
        • Glitza I.C.
        • Amaria R.N.
        • et al.
        Intracranial antitumor activity with encorafenib plus binimetinib in patients with melanoma brain metastases: A case series.
        Cancer. 2020; 126: 523-530https://doi.org/10.1002/cncr.32547
        • McGranahan N.
        • Swanton C.
        Clonal heterogeneity and tumor evolution: past, present, and the future.
        Cell. 2017; 168: 613-628https://doi.org/10.1016/j.cell.2017.01.018
        • Fischer G.M.
        • Jalali A.
        • Kircher D.A.
        • Lee W.-C.
        • McQuade J.L.
        • Haydu L.E.
        • et al.
        Molecular profiling reveals unique immune and metabolic features of melanoma brain metastases.
        Cancer Discov. 2019; 9 (Epub 2019 Feb 20): 628-645https://doi.org/10.1158/2159-8290.CD-18-1489