Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors

  • Nithya Krishnamurthy
    Correspondence
    Corresponding author at: Center for Personalized Cancer Therapy, UC San Diego – Moores Cancer Center 3855 Health Sciences Drive, MC #0658, La Jolla, CA 92093-0658, USA.
    Affiliations
    Center for Personalized Cancer Therapy, UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
    Search for articles by this author
  • Razelle Kurzrock
    Affiliations
    Center for Personalized Cancer Therapy, UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA, USA

    Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
    Search for articles by this author
Published:November 13, 2017DOI:https://doi.org/10.1016/j.ctrv.2017.11.002

      Highlights

      • Wnt is a family of proteins involved in stem cell renewal and organogenesis.
      • Wnt pathway activation occurs in many cancers and contributes to tumor recurrence.
      • Wnt has significant cross talk with Notch and Sonic Hedgehog pathways.
      • Update on clinical trials of agents targeting Wnt, Notch, and Sonic Hedgehog.

      Abstract

      The Wnt/beta-catenin pathway is a family of proteins that is implicated in many vital cellular functions such as stem cell regeneration and organogenesis. Several intra-cellular signal transduction pathways are induced by Wnt, notably the Wnt/beta-catenin dependent pathway or canonical pathway and the non-canonical or beta-catenin-independent pathway; the latter includes the Wnt/Ca2+ and Planar Cell Polarity pathway (PCP). Wnt activation occurs at the intestinal crypt floor, and is critical to optimal maintenance of stem cells. Colorectal cancers show evidence of Wnt signaling pathway activation and this is associated with loss of function of the tumor regulator APC. Wnt activation has been observed in breast, lung, and hematopoietic malignancies and contributes to tumor recurrence. The Wnt pathway cross talks with the Notch and Sonic Hedgehog pathways, which has implications for therapeutic interventions in cancers. There are significant challenges in targeting the Wnt pathway, including finding agents that are efficacious without damaging the system of normal somatic stem cell function in cellular repair and tissue homeostasis. Here, we comprehensively review the Wnt pathway and its interactions with the Notch and Sonic Hedgehog pathways. We present the state of the field in effectors and inhibitors of Wnt signaling, including updates on clinical trials in various cancers with inhibitors of Wnt, Notch, and Sonic Hedgehog.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Cancer Treatment Reviews
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Croce J.C.
        • McClay D.R.
        Evolution of the Wnt pathways.
        Wnt Signaling. 2009; : 3-18
        • Willert K.
        • Brown J.D.
        • Danenberg E.
        • Duncan A.W.
        • Weissman I.L.
        • Reya T.
        • et al.
        Wnt proteins are lipid-modified and can act as stem cell growth factors.
        Nature. 2003 May 22; 423: 448-452
        • MacDonald B.T.
        • Tamai K.
        • He X.
        Wnt/β-catenin signaling: components, mechanisms, and diseases.
        Dev Cell. 2009 Jul 21; 17: 9-26
        • Wu D.
        • Pan W.
        GSK3: a multifaceted kinase in Wnt signaling.
        Trends Biochem Sci. 2010 Mar 31; 35: 161-168
        • Bilić J.
        • Huang Y.L.
        • Davidson G.
        • Zimmermann T.
        • Cruciat C.M.
        • Bienz M.
        • et al.
        Wnt induces LRP6 signalosomes and promotes disheveled-dependent LRP6 phosphorylation.
        Science. 2007 Jun 15; 316: 1619-1622
        • Gordon M.D.
        • Nusse R.
        Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors.
        J Biol Chem. 2006 Aug 11; 281: 22429-22433
        • Spiegelman V.S.
        • Slaga T.J.
        • Pagano M.
        • Minamoto T.
        • Ronai Z.E.
        • Fuchs S.Y.
        Wnt/β-catenin signaling induces the expression and activity of βTrCP ubiquitin ligase receptor.
        Mol Cell. 2000 May 31; 5: 877-882
        • Kohn A.D.
        • Moon R.T.
        Wnt and calcium signaling: β-catenin-independent pathways.
        Cell Calcium. 2005 Oct 31; 38: 439-446
        • Topol L.
        • Jiang X.
        • Choi H.
        • Garrett-Beal L.
        • Carolan P.J.
        • Yang Y.
        Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3–independent β-catenin degradation.
        J Cell Biol. 2003 Sep 1; 162: 899-908
        • Okamoto M.
        • Udagawa N.
        • Uehara S.
        • Maeda K.
        • Yamashita T.
        • Nakamichi Y.
        • et al.
        Noncanonical Wnt5a enhances Wnt/β-catenin signaling during osteoblastogenesis.
        Sci Rep. 2014 Mar; 27: 4493
        • Holmen S.L.
        • Salic A.
        • Zylstra C.R.
        • Kirschner M.W.
        • Williams B.O.
        A novel set of Wnt-Frizzled fusion proteins identifies receptor components that activate β-catenin-dependent signaling.
        J Biol Chem. 2002 Sep 20; 277: 34727-34735
        • Jiang X.
        • Charlat O.
        • Zamponi R.
        • Yang Y.
        • Cong F.
        Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases.
        Mol Cell. 2015 May 7; 58: 522-533
        • MacDonald B.T.
        • He X.
        Frizzled and LRP5/6 Receptors for Wnt/β-Catenin Signaling.
        Cold Spring Harbor Perspect Biol. 2012; 4: a007880
        • Jernigan K.K.
        • Cselenyi C.S.
        • Thorne C.A.
        • Hanson A.J.
        • Tahinci E.
        • Hajicek N.
        • et al.
        Gβγ activates GSK3 to promote LRP6-mediated β-catenin transcriptional activity.
        Sci Signal. 2010 May 11; 3: Ra37
        • Kim S.E.
        • Huang H.
        • Zhao M.
        • Zhang X.
        • Zhang A.
        • Semonov M.V.
        • et al.
        Wnt stabilization of β-catenin reveals principles for morphogen receptor-scaffold assemblies.
        Science. 2013 May 17; 340: 867-870
        • Hart M.J.
        • de los Santos R.
        • Albert I.N.
        • Rubinfeld B.
        • Polakis P.
        Downregulation of β-catenin by human Axin and its association with the APC tumor suppressor, β-catenin and GSK3β.
        Curr Biol. 1998 May 7; 8: 573-581
        • Zeng X.
        • Huang H.
        • Tamai K.
        • Zhang X.
        • Harada Y.
        • Yokota C.
        • et al.
        Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions.
        Development. 2008 Jan 15; 135: 367-375
        • Schneider P.N.
        • Slusarski D.C.
        • Houston D.W.
        Differential role of Axin RGS domain function in Wnt signaling during anteroposterior patterning and maternal axis formation.
        PLoS ONE. 2012 Sep 5; 7: e44096
        • Bienz M.
        • Clevers H.
        Linking colorectal cancer to Wnt signaling.
        Cell. 2000 Oct 13; 103: 311-320
        • Aoki K.
        • Taketo M.M.
        Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene.
        J Cell Sci. 2007 Oct 1; 120: 3327-3335
        • Loregger A.
        • Grandl M.
        • Mejías-Luque R.
        • Allgäuer M.
        • Degenhart K.
        • Haselmann V.
        • et al.
        The E3 ligase RNF43 inhibits Wnt signaling downstream of mutated b-catenin by sequestering TCF4 to the nuclear membrane.
        Sci Signal. 2015; 8: 393
        • Zebisch M.
        • Xu Y.
        • Krastev C.
        • MacDonald B.T.
        • Chen M.
        • Gilbert R.J.
        • et al.
        Structural and molecular basis of ZNRF3/RNF43 transmembrane ubiquitin ligase inhibition by the Wnt agonist R-spondin.
        Nature Commun. 2013 Nov; 14: 4
        • Collu G.M.
        • Hidalgo-Sastre A.
        • Brennan K.
        Wnt-Notch signalling crosstalk in development and disease.
        Cell Mol Life Sci. 2014 Sep 1; 71: 3553-3567
        • Borggrefe T.
        • Lauth M.
        • Zwijsen A.
        • Huylebroeck D.
        • Oswald F.
        • Giaimo B.D.
        The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways. Biochimica et Biophysica Acta (BBA)-Molecular.
        Cell Res. 2016 Feb 29; 1863: 303-313
        • Ann E.J.
        • Kim H.Y.
        • Seo M.S.
        • Mo J.S.
        • Kim M.Y.
        • Yoon J.H.
        • et al.
        Wnt5a controls Notch1 signaling through CaMKII-mediated degradation of the SMRT corepressor protein.
        J Biol Chem. 2012 Oct 26; 287: 36814-36829
        • Song L.
        • Li Z.Y.
        • Liu W.P.
        • Zhao M.R.
        Crosstalk between Wnt/β-catenin and Hedgehog/Gli signaling pathways in colon cancer and implications for therapy.
        Cancer Biol Ther. 2015 Jan 2; 16: 1-7
        • Wang B.
        • Li Y.
        Evidence for the direct involvement of beta TrCP in Gli3 protein processing.
        Proc Natl Acad Sci U S A. 2006; 103 (PMID:16371461): 33-38
        • Meng X.
        • Poon R.
        • Zhang X.
        • Cheah A.
        • Ding Q.
        • Hui C.C.
        • et al.
        Suppressor of fused negatively regulates beta-catenin signaling.
        J Biol Chem. 2001; 276 (PMID: 11477086): 40113-40119
        • Riffell J.L.
        • Lord C.J.
        • Ashworth A.
        Tankyrase-targeted therapeutics: expanding opportunities in the PARP family.
        Nat Rev Drug Discovery. 2012 Dec 1; 11: 923-936
        • Tian X.H.
        • Hou W.J.
        • Fang Y.
        • Fan J.
        • Tong H.
        • Bai S.L.
        • et al.
        XAV939, a tankyrase 1 inhibitior, promotes cell apoptosis in neuroblastoma cell lines by inhibiting Wnt/β-catenin signaling pathway.
        J Exp Clin Cancer Res. 2013 Dec 5; 32: 1
        • Ma L.
        • Wang X.
        • Jia T.
        • Wei W.
        • Chua M.S.
        • So S.
        Tankyrase inhibitors attenuate WNT/β-catenin signaling and inhibit growth of hepatocellular carcinoma cells.
        Oncotarget. 2015 Sep 22; 6: 25390
        • Wessel Stratford E.
        • Daffinrud J.
        • Munthe E.
        • Castro R.
        • Waaler J.
        • Krauss S.
        • et al.
        The tankyrase-specific inhibitor JW74 affects cell cycle progression and induces apoptosis and differentiation in osteosarcoma cell lines.
        Cancer Med. 2014 Feb 1; 3: 36-46
        • Mo M.L.
        • Li M.R.
        • Chen Z.
        • Liu X.W.
        • Sheng Q.
        • Zhou H.M.
        Inhibition of the Wnt palmitoyl transferase porcupine suppresses cell growth and downregulates the Wnt/β-catenin pathway in gastric cancer.
        Oncol Lett. 2013 May 1; 5: 1719-1723
        • Fujii N.
        • You L.
        • Xu Z.
        • Uematsu K.
        • Shan J.
        • He B.
        • et al.
        An Antagonist of Dishevelled Protein-Protein Interaction Suppresses β-Catenin–Dependent Tumor Cell Growth.
        Can Res. 2007 Jan 15; 67: 573-579
        • Shan J.
        • Zhang X.
        • Bao J.
        • Cassell R.
        • Zheng J.J.
        Synthesis of potent dishevelled PDZ domain inhibitors guided by virtual screening and NMR studies.
        Chem Biol Drug Des. 2012 Apr 1; 79: 376-383
        • Gandhirajan R.K.
        • Staib P.A.
        • Minke K.
        • Gehrke I.
        • Plickert G.
        • Schlösser A.
        • et al.
        Small molecule inhibitors of Wnt/β-catenin/lef-1 signaling induces apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo.
        Neoplasia. 2010 Apr 30; 12 (326-IN6)
        • Arensman M.D.
        • Telesca D.
        • Lay A.R.
        • Kershaw K.M.
        • Wu N.
        • Donahue T.R.
        • et al.
        The CREB-binding protein inhibitor ICG-001 suppresses pancreatic cancer growth.
        Mol Cancer Ther. 2014 Oct 1; 13: 2303-2314
        • Hallett R.M.
        • Kondratyev M.K.
        • Giacomelli A.O.
        • Nixon A.M.
        • Girgis-Gabardo A.
        • Ilieva D.
        • et al.
        Small molecule antagonists of the Wnt/beta-catenin signaling pathway target breast tumor-initiating cells in a Her2/Neu mouse model of breast cancer.
        PLoS ONE. 2012 Mar 28; 7: e33976
        • Masuda M.
        • Sawa M.
        • Yamada T.
        Therapeutic targets in the Wnt signaling pathway: Feasibility of targeting TNIK in colorectal cancer.
        Pharmacol Ther. 2015 Dec; 31: 1-9
        • Liu J.
        • Pan S.
        • Hsieh M.H.
        • Ng N.
        • Sun F.
        • Wang
        • et al.
        Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974.
        Proc Natl Acad Sci. 2013 Dec 10; 110: 20224-20229
        • Smith D.C.
        • Rosen L.S.
        • Chugh R.
        • Goldman J.W.
        • Xu L.
        • Kapoun A.
        • et al.
        First-in-human evaluation of the human monoclonal antibody vantictumab (OMP-18R5; anti-Frizzled) targeting the WNT pathway in a phase I study for patients with advanced solid tumors.
        J Clin Oncol. 2013 May 31; 31
        • Le P.N.
        • McDermott J.D.
        • Jimeno A.
        Targeting the Wnt pathway in human cancers: Therapeutic targeting with a focus on OMP-54F28.
        Pharmacol Ther. 2015 Feb; 28: 1
        • Fischer M.M.
        • Cancilla B.
        • Yeung V.P.
        • Cattaruzza F.
        • Chartier C.
        • Murriel C.L.
        • et al.
        WNT antagonists exhibit unique combinatorial antitumor activity with taxanes by potentiating mitotic cell death.
        Sci Adv. 2017 Jun 1; 3: e1700090
        • Canesin G.
        • Evans-Axelsson S.
        • Hellsten R.
        • Krzyzanowska A.
        • Prasad C.P.
        • Bjartell A.
        • et al.
        Treatment with the WNT5A-mimicking peptide Foxy-5 effectively reduces the metastatic spread of WNT5A-low prostate cancer cells in an orthotopic mouse model.
        PLoS ONE. 2017 Sep 8; 12: e0184418
        • Fukukawa C.
        • Hanaoka H.
        • Nagayama S.
        • Tsunoda T.
        • Toguchida J.
        • Endo K.
        • et al.
        Radioimmunotherapy of human synovial sarcoma using a monoclonal antibody against FZD10.
        Cancer Sci. 2008 Feb 1; 99: 432-440
        • Cortes J.E.
        • Faderl S.
        • Pagel J.
        • Jung C.W.
        • Yoon S.S.
        • Koh Y.
        • et al.
        Phase 1 study of CWP232291 in relapsed/refractory acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS).
        in: ASCO Annual Meeting Proceedings. vol. 33, No. 15_suppl. 2015 May 20: 7044
        • Lenz H.J.
        • Kahn M.
        Safely targeting cancer stem cells via selective catenin coactivator antagonism.
        Cancer Sci. 2014 Sep 1; 105: 1087-1092
        • Pozzi S.
        • Fulciniti M.
        • Yan H.
        • Vallet S.
        • Eda H.
        • Patel K.
        • et al.
        In vivo and in vitro effects of a novel anti-Dkk1 neutralizing antibody in multiple myeloma.
        Bone. 2013; 53: 487-496
      1. Ko AH, Chiorean EG, Kwak EL, Lenz HJ, Nadler PI, Wood DL et al. Final results of a phase Ib dose-escalation study of PRI-724, a CBP/beta-catenin modulator, plus gemcitabine (GEM) in patients with advanced pancreatic adenocarcinoma (APC) as second-line therapy after FOLFIRINOX or FOLFOX. 2016.

        • Arend R.C.
        • Londoño-Joshi A.I.
        • Samant R.S.
        • Li Y.
        • Conner M.
        • Hidalgo B.
        • et al.
        Inhibition of Wnt/β-catenin pathway by niclosamide: A therapeutic target for ovarian cancer.
        Gynecol Oncol. 2014 Jul 31; 134: 112-120
        • Tai W.P.
        • Hu P.J.
        • Wu J.
        • Lin X.C.
        The inhibition of Wnt/β-catenin signaling pathway in human colon cancer cells by sulindac.
        Tumori. 2014; 100: 97-101
        • Li B.
        • Flaveny C.A.
        • Giambelli C.
        • Fei D.L.
        • Han L.
        • Hang B.I.
        • et al.
        Repurposing the FDA-approved pinworm drug pyrvinium as a novel chemotherapeutic agent for intestinal polyposis.
        PLoS ONE. 2014 Jul 8; 9: e101969
        • Krop I.
        • Demuth T.
        • Guthrie T.
        • Wen P.Y.
        • Mason W.P.
        • Chinnaiyan P.
        • et al.
        Phase I pharmacologic and pharmacodynamic study of the gamma secretase (Notch) inhibitor MK-0752 in adult patients with advanced solid tumors.
        J Clin Oncol. 2012 Apr 30; 30: 2307-2313
        • Schott A.F.
        • Landis M.D.
        • Dontu G.
        • Griffith K.A.
        • Layman R.M.
        • Krop I.
        • et al.
        Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors.
        Clin Cancer Res. 2013 Mar 15; 19: 1512-1524
        • Yao J.
        • Qian C.
        Inhibition of Notch3 enhances sensitivity to gemcitabine in pancreatic cancer through an inactivation of PI3K/Akt-dependent pathway.
        Med Oncol. 2010 Sep 1; 27: 1017-1022
        • Tolcher A.W.
        • Messersmith W.A.
        • Mikulski S.M.
        • Papadopoulos K.P.
        • Kwak E.L.
        • Gibbon D.G.
        • et al.
        Phase I study of RO4929097, a gamma secretase inhibitor of Notch signaling, in patients with refractory metastatic or locally advanced solid tumors.
        J Clin Oncol. 2012 Apr 23; 30: 2348-2353
        • De Jesus-Acosta A.
        • Laheru D.
        • Maitra A.
        • Arcaroli J.
        • Rudek M.A.
        • Dasari A.
        • et al.
        A phase II study of the gamma secretase inhibitor RO4929097 in patients with previously treated metastatic pancreatic adenocarcinoma.
        Invest New Drugs. 2014 Aug 1; 32: 739-745
        • Papayannidis C.
        • DeAngelo D.J.
        • Stock W.
        • Huang B.
        • Shaik M.N.
        • Cesari R.
        • et al.
        A Phase 1 study of the novel gamma-secretase inhibitor PF-03084014 in patients with T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma.
        Blood Cancer J. 2015 Sep 1; 5: e350
        • Zweidler-McKay P.A.
        • DeAngelo D.J.
        • Douer D.
        • Dombret H.
        • Ottmann O.G.
        • Vey N.
        • et al.
        The safety and activity of BMS-906024, a gamma secretase inhibitor (GSI) with anti-notch activity, in patients with relapsed T-cell acute lymphoblastic leukemia (T-ALL): initial results of a phase 1 trial.
        Blood. 2014 Dec 6; 124: 968
        • Jenkins D.W.
        • Ross S.
        • Veldman-Jones M.
        • Foltz I.N.
        • Clavette B.C.
        • Manchulenko K.
        • et al.
        MEDI0639: a novel therapeutic antibody targeting Dll4 modulates endothelial cell function and angiogenesis in vivo.
        Mol Cancer Ther. 2012 Jun 7;
        • Patnaik A.
        • LoRusso P.
        • Munster P.
        • Tolcher A.W.
        • Davis S.L.
        • Heymach J.
        • et al.
        Safety and early evidence of activity of a first-in-human phase I study of the novel cancer stem cell (CSC) targeting antibody OMP-52M51 (anti-Notch1) administered intravenously to patients with certain advanced solid tumors.
        Eur J Cancer. 2014 Nov; 1: 7
        • Catenacci D.V.
        • Junttila M.R.
        • Karrison T.
        • Bahary N.
        • Horiba M.N.
        • Nattam S.R.
        • et al.
        Randomized phase Ib/II study of gemcitabine plus placebo or vismodegib, a Hedgehog pathway inhibitor, in patients with metastatic pancreatic cancer.
        J Clin Oncol. 2015 Nov 2; 33: 4284-4292
        • Steg A.D.
        • Katre A.A.
        • Bevis K.S.
        • Ziebarth A.
        • Dobbin Z.C.
        • Shah M.M.
        • et al.
        Smoothened antagonists reverse taxane resistance in ovarian cancer.
        Mol Cancer Ther. 2012 Jul 1; 11: 1587-1597
        • Aberger F.
        • Hutterer E.
        • Sternberg C.
        • del Burgo P.J.
        • Hartmann T.N.
        Acute myeloid leukemia–strategies and challenges for targeting oncogenic Hedgehog/GLI signaling.
        Cell Commun Signal. 2017 Jan 25; 15: 8
      2. Campbell VT, Nadesan PP, Wang Y, Whetstone H, McGovern K, Read M et al. Abstract LB-380: Direct targeting of the Hedgehog pathway in primary chondrosarcoma xenografts with the Smoothened inhibitor IPI-926. 2011.

        • Vermeulen L.
        • De Felipe.
        • Sousa E.M.
        • Van Der Heijden M.
        • Cameron K.
        • De Jong J.H.
        • et al.
        Wnt activity defines colon cancer stem cells and is regulated by the microenvironment.
        Nat Cell Biol. 2010 May 1; 12: 468-476
        • Giannakis M.
        • Hodis E.
        • Mu X.J.
        • Yamauchi M.
        • Rosenbluh J.
        • Cibulskis K.
        • et al.
        RNF43 is frequently mutated in colorectal and endometrial cancers.
        Nat Genet. 2014 Dec 1; 46: 1264-1266
        • Seshagiri S.
        • Stawiski E.W.
        • Durinck S.
        • Modrusan Z.
        • Storm E.E.
        • Conboy C.B.
        • et al.
        Recurrent R-spondin fusions in colon cancer.
        Nature. 2012 Aug 30; 488: 660-664
        • Khramtsov A.I.
        • Khramtsova G.F.
        • Tretiakova M.
        • Huo D.
        • Olopade O.I.
        • Goss K.H.
        Wnt/β-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome.
        Am J Pathol. 2010 Jun 30; 176: 2911-2920
        • Schade B.
        • Lesurf R.
        • Sanguin-Gendreau V.
        • Bui T.
        • Deblois G.
        • O′Toole S.A.
        • et al.
        Β-Catenin signaling is a critical event in ErbB2-mediated mammary tumor progression.
        Can Res. 2013; 73: 4474-4487
        • Teng Y.
        • Wang X.
        • Wang Y.
        • Ma D.
        Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells.
        Biochem Biophys Res Commun. 2010 Feb 12; 392: 373-379
        • Staal F.J.
        • Sen J.M.
        The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis.
        Eur J Immunol. 2008; 38: 1788-1794
        • Peterson L.F.
        • Turbiak A.J.
        • Giannola D.M.
        • Donato N.
        • Showalter H.H.
        • Fearon E.R.
        • et al.
        Wnt-Pathway Directed Compound Targets Blast Crisis and Chronic Phase CML Leukemia Stem Progenitors.
        Blood. 2009 Nov 20; 114: 2168
        • Nagaraj A.B.
        • Joseph P.
        • Kovalenko O.
        • Singh S.
        • Armstrong A.
        • Redline R.
        • et al.
        Critical role of Wnt/β-catenin signaling in driving epithelial ovarian cancer platinum resistance.
        Oncotarget. 2015 Sep 15; 6: 23720
        • Huss S.
        • Nehles J.
        • Binot E.
        • Wardelmann E.
        • Mittler J.
        • Kleine M.A.
        • et al.
        Β-Catenin (CTNNB1) mutations and clinicopathological features of mesenteric desmoid-type fibromatosis.
        Histopathology. 2013 Jan 1; 62: 294-304
        • Wang X.
        • Moon J.
        • Dodge M.E.
        • Pan X.
        • Zhang L.
        • Hanson J.M.
        • et al.
        The development of highly potent inhibitors for porcupine.
        J Med Chem. 2013 Mar 19; 56: 2700-2704
        • Giefing M.
        • Wierzbicka M.
        • Szyfter K.
        • Brenner J.C.
        • Braakhuis B.J.
        • Brakenhoff R.H.
        • et al.
        Takes RP. Moving towards personalised therapy in head and neck squamous cell carcinoma through analysis of next generation sequencing data.
        Eur J Cancer. 2016 Mar; 31: 147-157
        • Koo B.K.
        • van Es J.H.
        • van den Born M.
        • Clevers H.
        Porcupine inhibitor suppresses paracrine Wnt-driven growth of Rnf43; Znrf3-mutant neoplasia.
        Proc Natl Acad Sci. 2015 Jun 16; 112: 7548-7550
        • Teneggi V.
        • Ng M.
        • Tan D.S.
        • Subbiah V.
        • Weekes C.
        • Diermayr V.
        • et al.
        152O A phase 1, first-in-human dose escalation study of ETC-159 in advanced or metastatic solid tumours.
        Ann Oncol. 2016 Dec 1; 27
        • He B.
        • You L.
        • Uematsu K.
        • Xu Z.
        • Lee A.Y.
        • Matsangou M.
        • et al.
        A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells.
        Neoplasia. 2004 Jan 1; 6: 7-14
        • Mikami I.
        • You L.
        • He B.
        • Xu Z.
        • Batra S.
        • Lee A.Y.
        • et al.
        Efficacy of Wnt-1 monoclonal antibody in sarcoma cells.
        BMC Cancer. 2005 May 24; 5: 53
      3. Jimeno A, Gordon MS, Chugh R, Messersmith WA, Mendelson DS, Dupont J et al. A first-in-human phase 1 study of anticancer stem cell agent OMP-54F28 (FZD8-Fc), decoy receptor for WNT ligands, in patients with advanced solid tumors. 2014.

        • Yeung P.
        • Beviglia L.
        • Cancilla B.
        • Dee-Hoskins C.
        • Evans J.
        • Fischer M.M.
        • et al.
        Wnt pathway antagonist OMP-54F28 (FZD8-Fc) inhibits tumor growth and reduces tumor-initiating cell frequency in patient-derived hepatocellular carcinoma and ovarian cancer xenograft models.
        in: AACR annual meeting. 2014 Apr: 5-9
        • Weekes C.
        • Berlin J.
        • Lenz H.J.
        • O'Neil B.
        • Messersmith W.
        • Cohen S.
        • et al.
        Phase 1b study of WNT inhibitor ipafricept (IPA, decoy receptor for WNT ligands) with nab-paclitaxel (Nab-P) and gemcitabine (G) in patients (pts) with previously untreated stage IV pancreatic cancer (PC).
        Ann Oncol. 2016 Oct 1; 27: 367PD
        • Arqués O.
        • Chicote I.
        • Puig I.
        • Tenbaum S.P.
        • Argilés G.
        • Dienstmann R.
        • et al.
        Tankyrase inhibition blocks Wnt/β-catenin pathway and reverts resistance to PI3K and AKT inhibitors in the treatment of colorectal cancer.
        Clin Cancer Res. 2016 Feb 1; 22: 644-656
        • Zhong Y.
        • Katavolos P.
        • Nguyen T.
        • Lau T.
        • Boggs J.
        • Sambrone A.
        • et al.
        Tankyrase inhibition causes reversible intestinal toxicity in mice with a therapeutic index< 1.
        Toxicol Pathol. 2016 Feb; 44: 267-278
        • Grandy D.
        • Shan J.
        • Zhang X.
        • Rao S.
        • Akunuru S.
        • Li H.
        • et al.
        Discovery and characterization of a small molecule inhibitor of the PDZ domain of dishevelled.
        J Biol Chem. 2009 Jun 12; 284: 16256-16263
        • Lepourcelet M.
        • Chen Y.N.
        • France D.S.
        • Wang H.
        • Crews P.
        • Petersen F.
        • et al.
        Small-molecule antagonists of the oncogenic Tcf/β-catenin protein complex.
        Cancer Cell. 2004 Jan 31; 5: 91-102
        • Säfholm A.
        • Tuomela J.
        • Rosenkvist J.
        • Dejmek J.
        • Härkönen P.
        • Andersson T.
        The Wnt-5a–derived hexapeptide foxy-5 inhibits breast cancer metastasis in vivo by targeting cell motility.
        Clin Cancer Res. 2008 Oct 15; 14: 6556-6563
        • Kurayoshi M.
        • Oue N.
        • Yamamoto H.
        • Kishida M.
        • Inoue A.
        • Asahara T.
        • et al.
        Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion.
        Can Res. 2006 Nov 1; 66: 10439-10448
      4. Soerensen PG, Andersson T, Buhl U, Moelvadgaard T, Jensen PB, Brunner N, et al. Phase I dose-escalating study to evaluate the safety, tolerability, and pharmacokinetic and pharmacodynamic profiles of Foxy-5 in patients with metastatic breast, colorectal, or prostate cancer. 2014.

        • Barat S.
        • Chen X.
        • Cuong Bui K.
        • Bozko P.
        • Götze J.
        • Christgen M.
        • et al.
        Gamma-Secretase Inhibitor IX (GSI) Impairs Concomitant Activation of Notch and Wnt-Beta-Catenin Pathways in CD44+ Gastric Cancer Stem Cells.
        Stem Cells Translat Med. 2017 Mar 1; 6: 819-829
        • Piha-Paul S.A.
        • Munster P.N.
        • Hollebecque A.
        • Argiles G.
        • Dajani O.
        • Cheng J.D.
        • et al.
        Results of a phase 1 trial combining ridaforolimus and MK-0752 in patients with advanced solid tumours.
        Eur J Cancer. 2015 Sep 30; 51: 1865-1873
        • Olsauskas-Kuprys R.
        • Zlobin A.
        • Osipo C.
        Gamma secretase inhibitors of Notch signaling.
        Onco Targets Ther. 2013 Jul; 1: 943-955
        • Gounder M.M.
        Notch inhibition in desmoids: “Sure it works in practice, but does it work in theory?”.
        Cancer. 2015 Nov 15; 121: 3933-3937
        • Infante P.
        • Alfonsi R.
        • Botta B.
        • Mori M.
        • Di Marcotullio L.
        Targeting GLI factors to inhibit the Hedgehog pathway.
        Trends Pharmacol Sci. 2015 Aug 31; 36: 547-558
        • Zhou H.
        • Mak P.Y.
        • Mu H.
        • Mak D.H.
        • Kouji H.
        • Konopleva M.
        • et al.
        Combination of tyrosine kinase inhibitor with β-Catenin/CBP modulator C82 reverses TKI resistance, eradicates quiescent CML stem/progenitors cells, and overcomes MSC-associated microenvironmental protection.
        Blood. 2014 Dec 6; 124: 401
        • White B.D.
        • Chien A.J.
        • Dawson D.W.
        Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers.
        Gastroenterology. 2012 Feb 29; 142: 219-232
      5. Hung HT, Ong R, Puehler F, Scholz A, Politz O, Zopf D et al. Sorafenib/Refametinib potently inhibits Wnt/β-catenin in vitro and patient-derived xenograft models of human hepatocellular carcinoma. 2016.

        • Messersmith W.A.
        • Shapiro G.I.
        • Cleary J.M.
        • Jimeno A.
        • Dasari A.
        • Huang B.
        • et al.
        A phase I, dose-finding study in patients with advanced solid malignancies of the oral γ-secretase inhibitor PF-03084014.
        Clin Cancer Res. 2015 Jan 1; 21: 60-67