Advertisement

Trabectedin as a chemotherapy option for patients with BRCA deficiency

Published:September 15, 2016DOI:https://doi.org/10.1016/j.ctrv.2016.09.009

      Highlights

      • We sought if BRCA deficiencies are associated with clinical responses to trabectedin.
      • BRCA genes are an important predictive indicator of sensitivity to trabectedin.
      • Improved response to trabectedin is a hallmark of BRCA1/2-mutated carriers.
      • Stratification based on BRCA mutations should become standard in upcoming trials.

      Abstract

      Trabectedin is a marine-derived product that was originally isolated from the Caribbean sea squirt Ecteinascidia turbinata and the first anticancer marine drug to be approved by the European Union. It is currently used as a single agent for the treatment of patients with soft tissue sarcoma after failure of anthracyclines and ifosfamide, or for those patients who are unsuited to receive these agents, and in patients with relapsed, platinum-sensitive ovarian cancer in combination with pegylated liposomal doxorubicin. Trabectedin has a unique multi-faceted mechanism of action that involves transcription regulation and DNA repair systems, including transcription-coupled nucleotide excision repair and homologous recombination repair (HRR) as the main hallmarks of its antiproliferative activity. In addition, trabectedin has shown the ability to modulate the tumor microenvironment. Indeed, the activity of trabectedin is related to altered function and expression of DNA repair genes, such as BRCA1 (BReast-CAncer susceptibility gene 1) and BRCA2. The particular sensitivity of sarcoma, ovarian and breast cancer cells deficient in HRR, previously observed in preclinical models, now has been confirmed in the clinical setting as well, suggesting that BRCA mutations are associated with improved clinical responses to trabectedin. Current efforts are focused on the evaluation of these unique features of trabectedin and on the identification of predictive factors for patients with an objective to determine whether a deficiency of HRR DNA repair pathway could impact the clinical benefit achieved from trabectedin.

      Keywords

      To read this article in full you will need to make a payment
      ESMO Member Login
      Login with your ESMO username and password.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Demetri G.D.
        • Chawla S.P.
        • von Mehren M.
        • Ritch P.
        • Baker L.H.
        • Blay J.Y.
        • et al.
        Efficacy and safety of trabectedin in patients with advanced or metastatic liposarcoma or leiomyosarcoma after failure of prior anthracyclines and ifosfamide: results of a randomized phase II study of two different schedules.
        J Clin Oncol. 2009; 27: 4188-4196
        • Demetri G.D.
        • von Mehren M.
        • Jones R.L.
        • Hensley M.L.
        • Schuetze S.M.
        • Staddon A.
        • et al.
        Efficacy and safety of trabectedin or dacarbazine for metastatic liposarcoma or leiomyosarcoma after failure of conventional chemotherapy: results of a phase iii randomized multicenter clinical trial.
        J Clin Oncol. 2016; 34: 786-793
        • Monk B.J.
        • Herzog T.J.
        • Kaye S.B.
        • Krasner C.N.
        • Vermorken J.B.
        • Muggia F.M.
        • et al.
        Trabectedin plus pegylated liposomal doxorubicin in recurrent ovarian cancer.
        J Clin Oncol. 2010; 28: 3107-3114
        • D’Incalci M.
        • Galmarini C.M.
        A review of trabectedin (ET-743): a unique mechanism of action.
        Mol Cancer Ther. 2010; 9: 2157-2163
        • Larsen A.K.
        • Galmarini C.M.
        • D’Incalci M.
        Unique features of trabectedin mechanism of action.
        Cancer Chemother Pharmacol. 2015;
        • Laroche-Clary A.
        • Chaire V.
        • Le Morvan V.
        • Neuville A.
        • Bertucci F.
        • Salas S.
        • et al.
        BRCA1 haplotype and clinical benefit of trabectedin in soft-tissue sarcoma patients.
        Br J Cancer. 2015; 112: 688-692
        • Italiano A.
        • Laurand A.
        • Laroche A.
        • Casali P.
        • Sanfilippo R.
        • Le Cesne A.
        • et al.
        ERCC5/XPG, ERCC1, and BRCA1 gene status and clinical benefit of trabectedin in patients with soft tissue sarcoma.
        Cancer. 2011; 117: 3445-3456
        • Schoffski P.
        • Taron M.
        • Jimeno J.
        • Grosso F.
        • Sanfilipio R.
        • Casali P.G.
        • et al.
        Predictive impact of DNA repair functionality on clinical outcome of advanced sarcoma patients treated with trabectedin: a retrospective multicentric study.
        Eur J Cancer. 2011; 47: 1006-1012
        • Monk B.J.
        • Ghatage P.
        • Parekh T.
        • Henitz E.
        • Knoblauch R.
        • Matos-Pita A.S.
        • et al.
        Effect of BRCA1 and XPG mutations on treatment response to trabectedin and pegylated liposomal doxorubicin in patients with advanced ovarian cancer: exploratory analysis of the phase 3 OVA-301 study.
        Ann Oncol. 2015; 26: 914-920
        • Massuti B.
        • Cobo M.
        • Camps C.
        • Domine M.
        • Provencio M.
        • Alberola V.
        • et al.
        Trabectedin in patients with advanced non-small-cell lung cancer (NSCLC) with XPG and/or ERCC1 overexpression and BRCA1 underexpression and pretreated with platinum.
        Lung Cancer. 2012; 76: 354-361
        • Lorusso D.
        • Scambia G.
        • Pignata S.
        • Sorio R.
        • Amadio G.
        • Lepori S.
        • et al.
        Prospective phase II trial of trabectedin in BRCA-mutated and/or BRCAness phenotype recurrent ovarian cancer patients: the MITO 15 trial.
        Ann Oncol. 2016; 27: 487-493
        • Delaloge S.
        • Wolp-Diniz R.
        • Byrski T.
        • Blum J.L.
        • Goncalves A.
        • Campone M.
        • et al.
        Activity of trabectedin in germline BRCA1/2-mutated metastatic breast cancer: results of an international first-in-class phase II study.
        Ann Oncol. 2014; 25: 1152-1158
        • Allavena P.
        • Signorelli M.
        • Chieppa M.
        • Erba E.
        • Bianchi G.
        • Marchesi F.
        • et al.
        Anti-inflammatory properties of the novel antitumor agent yondelis (trabectedin): inhibition of macrophage differentiation and cytokine production.
        Cancer Res. 2005; 65: 2964-2971
        • Germano G.
        • Frapolli R.
        • Belgiovine C.
        • Anselmo A.
        • Pesce S.
        • Liguori M.
        • et al.
        Role of macrophage targeting in the antitumor activity of trabectedin.
        Cancer Cell. 2013; 23: 249-262
        • D’Incalci M.
        Trabectedin mechanism of action: what’s new?.
        Future Oncol. 2013; 9: 5-10
        • Herrero A.B.
        • Martin-Castellanos C.
        • Marco E.
        • Gago F.
        • Moreno S.
        Cross-talk between nucleotide excision and homologous recombination DNA repair pathways in the mechanism of action of antitumor trabectedin.
        Cancer Res. 2006; 66: 8155-8162
        • Aune G.J.
        • Furuta T.
        • Pommier Y.
        Ecteinascidin 743: a novel anticancer drug with a unique mechanism of action.
        Anticancer Drugs. 2002; 13: 545-555
        • Soares D.G.
        • Escargueil A.E.
        • Poindessous V.
        • Sarasin A.
        • de Gramont A.
        • Bonatto D.
        • et al.
        Replication and homologous recombination repair regulate DNA double-strand break formation by the antitumor alkylator ecteinascidin 743.
        Proc Natl Acad Sci USA. 2007; 104: 13062-13067
        • Martinez N.
        • Sanchez-Beato M.
        • Carnero A.
        • Moneo V.
        • Tercero J.C.
        • Fernandez I.
        • et al.
        Transcriptional signature of Ecteinascidin 743 (Yondelis, Trabectedin) in human sarcoma cells explanted from chemo-naive patients.
        Mol Cancer Ther. 2005; 4: 814-823
        • Arora S.
        • Kothandapani A.
        • Tillison K.
        • Kalman-Maltese V.
        • Patrick S.M.
        Downregulation of XPF-ERCC1 enhances cisplatin efficacy in cancer cells.
        DNA Repair (Amst). 2010; 9: 745-753
        • Colmegna B.
        • Uboldi S.
        • Erba E.
        • D’Incalci M.
        Resistance to minor groove binders.
        Drug Discov Today Technol. 2014; 11: 73-79
        • Erba E.
        • Bergamaschi D.
        • Bassano L.
        • Damia G.
        • Ronzoni S.
        • Faircloth G.T.
        • et al.
        Ecteinascidin-743 (ET-743), a natural marine compound, with a unique mechanism of action.
        Eur J Cancer. 2001; 37: 97-105
        • Awada A.
        • Cortes J.
        • Martin M.
        • Aftimos P.
        • Oliveira M.
        • Lopez-Tarruella S.
        • et al.
        Phase 2 study of trabectedin in patients with hormone receptor-positive, HER-2-negative, advanced breast carcinoma according to expression of xeroderma pigmentosum G gene.
        Clin Breast Cancer. 2016;
        • Kawai A.
        • Araki N.
        • Sugiura H.
        • Ueda T.
        • Yonemoto T.
        • Takahashi M.
        • et al.
        Trabectedin monotherapy after standard chemotherapy versus best supportive care in patients with advanced, translocation-related sarcoma: a randomised, open-label, phase 2 study.
        Lancet Oncol. 2015; 16: 406-416
        • Le Cesne A.
        • Blay J.Y.
        • Domont J.
        • Tresch-Bruneel E.
        • Chevreau C.
        • Bertucci F.
        • et al.
        Interruption versus continuation of trabectedin in patients with soft-tissue sarcoma (T-DIS): a randomised phase 2 trial.
        Lancet Oncol. 2015; 16: 312-319
        • Le Cesne A.
        • Ray-Coquard I.
        • Duffaud F.
        • Chevreau C.
        • Penel N.
        • Bui Nguyen B.
        • et al.
        Trabectedin in patients with advanced soft tissue sarcoma: a retrospective national analysis of the French Sarcoma Group.
        Eur J Cancer. 2015; 51: 742-750
        • Jimeno J.
        • Schöffski P.
        • Casali P.
        • Grosso F.
        • Judson I.
        • Scurr M.
        • et al.
        Personalized therapy with trabectedin (Yondelis®) in advanced pre-treated sarcomas.
        Eur J Cancer. 2007; 5: 403-404
        • Vaughan S.
        • Coward J.I.
        • Bast Jr., R.C.
        • Berchuck A.
        • Berek J.S.
        • Brenton J.D.
        • et al.
        Rethinking ovarian cancer: recommendations for improving outcomes.
        Nat Rev Cancer. 2011; 11: 719-725
        • Bast Jr., R.C.
        • Hennessy B.
        • Mills G.B.
        The biology of ovarian cancer: new opportunities for translation.
        Nat Rev Cancer. 2009; 9: 415-428
        • The Cancer Genome Atlas Research Network
        Integrated genomic analyses of ovarian carcinoma.
        Nature. 2011; 474: 609-615
        • McAlpine J.N.
        • Porter H.
        • Kobel M.
        • Nelson B.H.
        • Prentice L.M.
        • Kalloger S.E.
        • et al.
        BRCA1 and BRCA2 mutations correlate with TP53 abnormalities and presence of immune cell infiltrates in ovarian high-grade serous carcinoma.
        Mod Pathol. 2012; 25: 740-750
        • Venkitaraman A.R.
        Linking the cellular functions of BRCA genes to cancer pathogenesis and treatment.
        Annu Rev Pathol Mech Dis. 2009; 4: 461-487
        • Monk B.J.
        • Herzog T.J.
        • Kaye S.B.
        • Krasner C.N.
        • Vermorken J.B.
        • Muggia F.
        • et al.
        Final survival results of the randomized phase III study of trabectedin with pegylated liposomal doxorubicin (PLD) versus PLD in recurrent ovarian cancer.
        J Clin Oncol. 2011; 29 (abstract 5046): 15
        • Poveda A.
        • Ray-Coquard I.
        • Romero I.
        • Lopez-Guerrero J.A.
        • Colombo N.
        Emerging treatment strategies in recurrent platinum-sensitive ovarian cancer: focus on trabectedin.
        Cancer Treat Rev. 2014; 40: 366-375
        • Coleman R.
        • Monk B.J.
        • del Carmen M.G.
        • Knoblauch R.
        • Parekh T.
        • Dawkins F.W.
        • et al.
        A phase 3 study of trabectedin (T) plus pegylated liposomal doxorubicin (PLD) versus PLD for treatment of advanced-relapsed epithelial ovarian, primary peritoneal, or fallopian tube cancer.
        J Clin Oncol. 2014; 32 (abstr TPS5612)
        • O’Cearbhaill R.
        • Zhou Q.
        • Iasonos A.
        • Hensley M.L.
        • Tew W.P.
        • Aghajanian C.
        • et al.
        The prophylactic conversion to an extended infusion schedule and use of premedication to prevent hypersensitivity reactions in ovarian cancer patients during carboplatin retreatment.
        Gynecol Oncol. 2010; 116: 326-331
        • Arun B.
        • Vogel K.J.
        • Lopez A.
        • Hernandez M.
        • Atchley D.
        • Broglio K.R.
        • et al.
        High prevalence of preinvasive lesions adjacent to BRCA1/2-associated breast cancers.
        Cancer Prev Res (Phila). 2009; 2: 122-127
        • Orban T.I.
        • Olah E.
        Emerging roles of BRCA1 alternative splicing.
        Mol Pathol. 2003; 56: 191-197
        • Turner N.
        • Tutt A.
        • Ashworth A.
        Hallmarks of ‘BRCAness’ in sporadic cancers.
        Nat Rev Cancer. 2004; 4: 814-819
        • D’Incalci M.
        • Zambelli A.
        Trabectedin for the treatment of breast cancer.
        Expert Opin Investig Drugs. 2016; 25: 105-115
        • Garcia M.J.
        • Saucedo-Cuevas L.P.
        • Munoz-Repeto I.
        • Fernandez V.
        • Robles M.J.
        • Domingo S.
        • et al.
        Analysis of DNA repair-related genes in breast cancer reveals CUL4A ubiquitin ligase as a novel biomarker of trabectedin response.
        Mol Cancer Ther. 2013; 12: 530-541
        • Bordeleau L.
        • Panchal S.
        • Goodwin P.
        Prognosis of BRCA-associated breast cancer: a summary of evidence.
        Breast Cancer Res Treat. 2010; 119: 13-24
        • Graeser M.K.
        • Engel C.
        • Rhiem K.
        • Gadzicki D.
        • Bick U.
        • Kast K.
        • et al.
        Contralateral breast cancer risk in BRCA1 and BRCA2 mutation carriers.
        J Clin Oncol. 2009; 27: 5887-5892
        • Metcalfe K.A.
        • Lynch H.T.
        • Ghadirian P.
        • Tung N.
        • Olivotto I.A.
        • Foulkes W.D.
        • et al.
        The risk of ovarian cancer after breast cancer in BRCA1 and BRCA2 carriers.
        Gynecol Oncol. 2005; 96: 222-226
        • Zelek L.
        • Yovine A.
        • Brain E.
        • Turpin F.
        • Taamma A.
        • Riofrio M.
        • et al.
        A phase II study of Yondelis (trabectedin, ET-743) as a 24-h continuous intravenous infusion in pretreated advanced breast cancer.
        Br J Cancer. 2006; 94: 1610-1614
        • Goldstein L.J.
        • Gurtler J.
        • Del Prete S.A.
        • Tjulandin S.
        • Semiglazov V.F.
        • Bayever E.
        • et al.
        Trabectedin as a single-agent treatment of advanced breast cancer after anthracycline and taxane treatment: a multicenter, randomized, phase II study comparing 2 administration regimens.
        Clin Breast Cancer. 2014; 14: 396-404
        • Therasse P.
        • Arbuck S.G.
        • Eisenhauer E.A.
        • Wanders J.
        • Kaplan R.S.
        • Rubinstein L.
        • et al.
        New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada.
        J Natl Cancer Inst. 2000; 92: 205-216
        • Le Cesne A.
        • Yovine A.
        • Blay J.Y.
        • Delaloge S.
        • Maki R.G.
        • Misset J.L.
        • et al.
        A retrospective pooled analysis of trabectedin safety in 1,132 patients with solid tumors treated in phase II clinical trials.
        Invest New Drugs. 2012; 30: 1193-1202
        • Lee J.M.
        • Ledermann J.A.
        • Kohn E.C.
        PARP Inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies.
        Ann Oncol. 2014; 25: 32-40
        • Tan D.S.
        • Kaye S.B.
        Chemotherapy for patients with BRCA1 and BRCA2-mutated ovarian cancer: Same or different?.
        Am Soc Clin Oncol Edu Book. 2015; : 114-121
        • Tan D.S.
        • Rothermundt C.
        • Thomas K.
        • Bancroft E.
        • Eeles R.
        • Shanley S.
        • et al.
        “BRCAness” syndrome in ovarian cancer: a case-control study describing the clinical features and outcome of patients with epithelial ovarian cancer associated with BRCA1 and BRCA2 mutations.
        J Clin Oncol. 2008; 26: 5530-5536
        • Sun C.
        • Li N.
        • Ding D.
        • Weng D.
        • Meng L.
        • Chen G.
        • et al.
        The role of BRCA status on the prognosis of patients with epithelial ovarian cancer: a systematic review of the literature with a meta-analysis.
        PLoS ONE. 2014; 9: e95285
        • Zhong Q.
        • Peng H.L.
        • Zhao X.
        • Zhang L.
        • Hwang W.T.
        Effects of BRCA1- and BRCA2-related mutations on ovarian and breast cancer survival: a meta-analysis.
        Clin Cancer Res. 2015; 21: 211-220
        • Monk B.J.
        • Coleman R.L.
        Changing the paradigm in the treatment of platinum-sensitive recurrent ovarian cancer: from platinum doublets to nonplatinum doublets and adding antiangiogenesis compounds.
        Int J Gynecol Cancer. 2009; 19: S63-S67
        • Pignata S.
        • Ferrandina G.
        • Scarfone G.
        • Scollo P.
        • Odicino F.
        • Selvaggi L.
        • et al.
        Extending the platinum-free interval with a non-platinum therapy in platinum-sensitive recurrent ovarian cancer. Results from the SOCRATES Retrospective Study.
        Oncology. 2006; 71: 320-326
        • Chuang Y.T.
        • Chang C.L.
        Extending platinum-free interval in partially platinum-sensitive recurrent ovarian cancer by a non-platinum regimen: its possible clinical significance.
        Taiwan J Obstet Gynecol. 2012; 51: 336-341
        • Kaye S.B.
        • Colombo N.
        • Monk B.J.
        • Tjulandin S.
        • Kong B.
        • Roy M.
        • et al.
        Trabectedin plus pegylated liposomal doxorubicin in relapsed ovarian cancer delays third-line chemotherapy and prolongs the platinum-free interval.
        Ann Oncol. 2011; 22: 49-58
        • Bookman M.A.
        Extending the platinum-free interval in recurrent ovarian cancer: the role of topotecan in second-line chemotherapy.
        Oncologist. 1999; 4: 87-94
        • Colmegna B.
        • Uboldi S.
        • Frapolli R.
        • Licandro S.A.
        • Panini N.
        • Galmarini C.M.
        • et al.
        Increased sensitivity to platinum drugs of cancer cells with acquired resistance to trabectedin.
        Br J Cancer. 2015; 113: 1687-1693
        • Kaufman B.
        • Shapira-Frommer R.
        • Schmutzler R.K.
        • Audeh M.W.
        • Friedlander M.
        • Balmana J.
        • et al.
        Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation.
        J Clin Oncol. 2015; 33: 244-250
        • Avila-Arroyo S.
        • Nunez G.S.
        • Garcia-Fernandez L.F.
        • Galmarini C.M.
        Synergistic effect of trabectedin and olaparib combination regimen in breast cancer cell lines.
        J Breast Cancer. 2015; 18: 329-338
        • Ordonez J.L.
        • Amaral A.T.
        • Carcaboso A.M.
        • Herrero-Martin D.
        • del Carmen Garcia.-Macias.M.
        • Sevillano V.
        • et al.
        The PARP inhibitor olaparib enhances the sensitivity of Ewing sarcoma to trabectedin.
        Oncotarget. 2015; 6: 18875-18890
        • Hennessy B.T.
        • Timms K.M.
        • Carey M.S.
        • Gutin A.
        • Meyer L.A.
        • Flake 2nd, D.D.
        • et al.
        Somatic mutations in BRCA1 and BRCA2 could expand the number of patients that benefit from poly (ADP ribose) polymerase inhibitors in ovarian cancer.
        J Clin Oncol. 2010; 28: 3570-3576