Advertisement

Extreme hypofractionation for early prostate cancer: Biology meets technology

Published:August 29, 2016DOI:https://doi.org/10.1016/j.ctrv.2016.08.005

      Highlights

      • An exhaustive review of extreme hypofractionated prostate radiotherapy is presented.
      • Available clinical data encourage hypofractionation in prostate cancer treatment.
      • Several technological improvements address the issue of accuracy in hypofractionation.
      • We present outcome results from 20 clinical studies enrolling more than 40 patients.

      Abstract

      The aim of this review is to present the available radiobiological, technical and clinical data about extreme hypofractionation in primary prostate cancer radiotherapy. The interest in this technique is based on the favourable radiobiological characteristics of prostate cancer and supported by advantageous logistic aspects deriving from short overall treatment time. The clinical validity of short-term treatment schedule is proven by a body of non-randomised studies, using both isocentric (LINAC-based) or non-isocentric (CyberKnife®-based) stereotactic body irradiation techniques. Twenty clinical studies, each enrolling more than 40 patients for a total of 1874 treated patients, were revised in terms of technological setting, toxicity, outcome and quality of life assessment. The implemented strategies for the tracking of the prostate and the sparing of the rectal wall have been investigated with particular attention. The urinary toxicity after prostate stereotactic body irradiation seems slightly more pronounced as compared to rectal adverse events, and this is more evident for late occurring events, but no worse as respect to conventional fractionation schemes. As far as the rate of severe acute toxicity is concerned, in all the available studies the treatment was globally well tolerated. While awaiting long-term data on efficacy and toxicity, the analysed studies suggest that the outcome profile of this approach, alongside the patient convenience and reduced costs, is promising. Forty-eight ongoing clinical trials are also presented as a preview of the expectation from the near future.

      Abbreviations:

      AIRO (Italian Association of Radiation Oncology), BT (brachytherapy), bRFS (biochemical relapse free survival), CT (computed tomography), CTV (clinical target volume), ERB (endorectal balloon), EBRT (external beam radiotherapy), EPIC (expanded prostate cancer index composite), GU (genitourinary), HDR (high dose-rate), IGRT (image-guided radiotherapy), IMRT (intensity modulated radiotherapy), IPSS (International Prostatic Symptoms Score), kV (kilo-voltage), LINAC (linear accelerator), MRI (magnetic resonance imaging), MU (monitor unit), MV (mega-voltage), PC (prostate cancer), PTV (planning target volume), QoL (quality of life), RT (radiation therapy), SBRT (stereotactic body radiation therapy), USC (universal survival curve)

      Keywords

      To read this article in full you will need to make a payment
      ESMO Member Login
      Login with your ESMO username and password.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Attard G.
        • Parker C.
        • Eeles R.A.
        • Schröder F.
        • Tomlins S.A.
        • Tannock I.
        • et al.
        Prostate cancer.
        Lancet. 2016; 387 (Epub 2015 Jun 11): 70-82https://doi.org/10.1016/S0140-6736(14)61947-4
        • Torre L.A.
        • Siegel R.L.
        • Ward E.M.
        • Jemal A.
        • et al.
        Global cancer incidence and mortality rates and trends—an update.
        Cancer Epidemiol Biomarkers Prev. 2016; 25 (Epub 2015 Dec 14): 16-27https://doi.org/10.1158/1055-9965.EPI-15-0578
        • Heidenreich A.
        • Bastian P.J.
        • Bellmunt J.
        • Bolla M.
        • Joniau S.
        • van der Kwast T.
        • et al.
        EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent-update 2013.
        Eur Urol. 2014; 65 (Epub 2013 Oct 6): 124-137https://doi.org/10.1016/j.eururo.2013.09.046
        • Roach 3rd, M.
        • Ceron Lizarraga T.L.
        • Lazar A.A.
        • et al.
        Radical prostatectomy versus radiation and androgen deprivation therapy for clinically localized prostate cancer: how good is the evidence?.
        Int J Radiat Oncol Biol Phys. 2015; 93 (Epub 2015 Nov 11): 1064-1070https://doi.org/10.1016/j.ijrobp.2015.08.005
        • Wolff R.F.
        • Ryder S.
        • Bossi A.
        • Briganti A.
        • Crook J.
        • Henry A.
        • et al.
        A systematic review of randomised controlled trials of radiotherapy for localised prostate cancer.
        Eur J Cancer. 2015; 51 (Epub 2015 Aug 5): 2345-2367https://doi.org/10.1016/j.ejca.2015.07.019
        • Lukka H.
        • Hayter C.
        • Julian J.A.
        • Warde P.
        • Morris W.J.
        • Gospodarowicz M.
        • et al.
        Randomized trial comparing two fractionation schedules for patients with localized prostate cancer.
        J Clin Oncol. 2005; 23: 6132-6138
        • Yeoh E.E.
        • Botten R.J.
        • Butters J.
        • Di Matteo A.C.
        • Holloway R.H.
        • Fowler J.
        Hypofractionated versus conventionally fractionated radiotherapy for prostate carcinoma: final results of phase III randomized trial.
        Int J Radiat Oncol Biol Phys. 2011; 81: 1271-1278
        • Pollack A.
        • Walker G.
        • Horwitz E.M.
        • Price R.
        • Feigenberg S.
        • Konski A.A.
        • et al.
        Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer.
        J Clin Oncol. 2013; 31: 3860-3868
        • Arcangeli G.
        • Saracino B.
        • Gomellini S.
        • Petrongari M.G.
        • Arcangeli S.
        • Sentinelli S.
        • et al.
        A prospective phase III randomized trial of hypofractionation versus conventional fractionation in patients with high-risk prostate cancer.
        Int J Radiat Oncol Biol Phys. 2010; 78: 11-18
        • Aluwini S.
        • Pos F.
        • Schimmel E.
        • Krol S.
        • van der Toorn P.P.
        • de Jager H.
        • et al.
        Hypofractionated versus conventionally fractionated radiotherapy for patients with prostate cancer (HYPRO): late toxicity results from a randomised non-inferiority phase 3 trial.
        Lancet Oncol. 2016; (pii: S1470–2045(15)00567-7)https://doi.org/10.1016/S1470-2045(15)00567-7
        • Wilkins A.
        • Mossop H.
        • Syndikus I.
        • Khoo V.
        • Bloomfield D.
        • Parker C.
        • et al.
        Hypofractionated radiotherapy versus conventionally fractionated radiotherapy for patients with intermediate-risk localised prostate cancer: 2-year patient-reported outcomes of the randomised, non-inferiority, phase 3 CHHiP trial.
        Lancet Oncol. 2015; 16: 1605-1616https://doi.org/10.1016/S1470-2045(15)00280-6
        • Proust-Lima C.
        • Taylor J.M.
        • Sécher S.
        • Sandler H.
        • Kestin L.
        • Pickles T.
        • et al.
        Confirmation of a low α/β ratio for prostate cancer treated by external beam radiation therapy alone using a post-treatment repeated-measures model for PSA dynamics.
        Int J Radiat Oncol Biol Phys. 2011; 79: 195-201
        • Miralbell R.
        • Roberts S.A.
        • Zubizarreta E.
        • Hendry J.H.
        • et al.
        Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: a/b = 1.4 (0.9–2.2) Gy.
        Int J Radiat Oncol Biol Phys. 2012; 82: e17-e24
        • Dasu A.
        • Toma-Dasu I.
        • et al.
        Prostate alpha/beta revisited an analysis of clinical results from 14168 patients.
        Acta Oncol. 2012; 51: 963-974
        • Fowler J.F.
        • et al.
        The linear-quadratic formula and progress in fractionated radiotherapy.
        Br J Radiol. 1989; 62: 679-694
        • Peeters S.T.
        • Heemsbergen W.D.
        • Koper P.C.
        • van Putten W.L.
        • Slot A.
        • Dielwart M.F.
        • et al.
        Dose–response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy.
        J Clin Oncol. 2006; 24: 1990-1996
        • Pollack A.
        • Zagars G.K.
        • Starkschall G.
        • Antolak J.A.
        • Lee J.J.
        • Huang E.
        • et al.
        Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial.
        Int J Radiat Oncol Biol Phys. 2002; 53: 1097-1105
        • Zietman A.L.
        • DeSilvio M.L.
        • Slater J.D.
        • Rossi Jr, C.J.
        • Miller D.W.
        • Adams J.A.
        • et al.
        Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial.
        JAMA. 2005; 294: 1233-1239
        • Kuban D.A.
        • Tucker S.L.
        • Dong L.
        • Starkschall G.
        • Huang E.H.
        • Cheung M.R.
        • et al.
        Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer.
        Int J Radiat Oncol Biol Phys. 2008; 70: 67-74
        • Dearnaley D.P.
        • Jovic G.
        • Syndikus I.
        • Khoo V.
        • Cowan R.A.
        • Graham J.D.
        • et al.
        Escalated-dose versus control-dose conformal radiotherapy for prostate cancer: long-term results from the MRC RT01 randomized controlled trial.
        Lancet Oncol. 2014; 15: 464-473https://doi.org/10.1016/S1470-2045(14)70040-3
        • Brenner D.J.
        • Hall E.J.
        • et al.
        Fractionation and protraction for radiotherapy of prostate carcinoma.
        Int J Radiat Oncol Biol Phys. 1999; 43: 1095-1101
        • Tree A.C.
        • Khoo V.S.
        • van As N.J.
        • Partridge M.
        • et al.
        Is biochemical relapse-free survival after profoundly hypofractionated radiotherapy consistent with current radiobiological models?.
        Clin Oncol (R Coll Radiol). 2014; 26 (Epub 2014 Feb 12): 216-229https://doi.org/10.1016/j.clon.2014.01.008
        • Clemente S.
        • Nigro R.
        • Oliviero C.
        • Marchioni C.
        • Esposito M.
        • Giglioli F.R.
        • et al.
        Role of the technical aspects of hypofractionated radiation therapy treatment of prostate cancer: a review.
        Int J Radiat Oncol Biol Phys. 2015; 91: 182-195https://doi.org/10.1016/j.ijrobp.2014.08.006
        • Koontz B.F.
        • Bossi A.
        • Cozzarini C.
        • Wiegel T.
        • D’Amico A.
        • et al.
        A systematic review of hypofractionation for primary management of prostate cancer.
        Eur Urol. 2015; 68 (Epub 2014 Sep 22): 683-691https://doi.org/10.1016/j.eururo.2014.08.009
        • Nahum A.E.
        • et al.
        The radiobiology of hypofractionation.
        Clin Oncol (R Coll Radiol). 2015; 27 (Epub 2015 Mar 18): 260-269https://doi.org/10.1016/j.clon.2015.02.001
        • Park C.
        • Papiez L.
        • Zhang S.
        • Story M.
        • Timmerman R.D.
        • et al.
        Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy.
        Int J Radiat Oncol Biol Phys. 2008; 70: 847e852
        • Vogelius I.R.
        • Bentzen S.M.
        • et al.
        Meta-analysis of the alpha/beta ratio for prostate cancer in the presence of an overall time factor: bad news, good news, or no news?.
        Int J Radiat Oncol Biol Phys. 2013; 85 (Epub 2012 May 30): 89-94https://doi.org/10.1016/j.ijrobp.2012.03.004
        • Dearnaley D.
        • Syndikus I.
        • Mossop H.
        • Khoo V.
        • Birtle A.
        • Bloomfield D.
        • et al.
        Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial.
        Lancet Oncol. 2016; (pii: S1470-2045(16)30102-4)https://doi.org/10.1016/S1470-2045(16)30102-4
        • Incrocci L.
        • Wortel R.C.
        • Alemayehu W.G.
        • Aluwini S.
        • Schimmel E.
        • Krol S.
        • et al.
        Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): final efficacy results from a randomised, multicentre, open-label, phase 3 trial.
        Lancet Oncol. 2016; (pii: S1470-2045(16)30070-5)https://doi.org/10.1016/S1470-2045(16)30070-5
        • Henderson D.R.
        • Tree A.C.
        • van As N.J.
        • et al.
        Stereotactic body radiotherapy for prostate cancer.
        Clin Oncol (R Coll Radiol). 2015; 27 (Epub 2015 Feb 21): 270-279https://doi.org/10.1016/j.clon.2015.01.011
        • Round C.E.
        • Williams M.V.
        • Mee T.
        • Kirkby N.F.
        • Cooper T.
        • Hoskin P.
        • et al.
        Radiotherapy demand and activity in England 2006–2020.
        Clin Oncol (R Coll Radiol). 2013; 25: 522-530https://doi.org/10.1016/j.clon.2013.05.005
        • Collins C.D.
        • Lloyd-Davies R.W.
        • Swan A.V.
        • et al.
        Radical external beam radiotherapy for localised carcinoma of the prostate using a hypofractionation technique.
        Clin Oncol (R Coll Radiol). 1991; 3: 127-132
        • De Bari B.
        • Daidone A.
        • Alongi F.
        • et al.
        Is high dose rate brachytherapy reliable and effective treatment for prostate cancer patients? A review of the literature.
        Crit Rev Oncol Hematol. 2015; 94 (Epub 2015 Feb 17): 360-370https://doi.org/10.1016/j.critrevonc.2015.02.003
        • Leksell L.
        • et al.
        The stereotactic method and radiosurgery of the brain.
        Acta Chir Scand. 1951; 102: 316-319
        • Franco P.
        • De Bari B.
        • Ciammella P.
        • Fiorentino A.
        • Chiesa S.
        • Amelio D.
        • et al.
        The role of stereotactic ablative radiotherapy in oncological and non-oncological clinical settings: highlights from the 7th Meeting of AIRO–Young Members Working Group (AIRO Giovani).
        Tumori. 2014; 100: e214-e219https://doi.org/10.1700/1778.19280
        • De Bari B.
        • Fiorentino A.
        • Arcangeli S.
        • Franco P.
        • D’Angelillo R.M.
        • Alongi F.
        From radiobiology to technology: what is changing in radiotherapy for prostate cancer.
        Expert Rev Anticancer Ther. 2014; 14: 553-564
        • Fawaz Z.S.
        • Yassa M.
        • Nguyen D.H.
        • Vavassis P.
        • et al.
        Fiducial marker implantation in prostate radiation therapy: complication rates and technique.
        Cancer Radiother. 2014; 18: 736-739
        • Langenhuijsen J.F.
        • van Lin E.N.
        • Kiemeney L.A.
        • van der Vight L.P.
        • McColl G.M.
        • Visser A.G.
        • et al.
        Ultrasound-guided transrectal implantation of gold markers for prostate localization during external beam radiotherapy: complication rate and risk factors.
        Int J Radiat Oncol Biol Phys. 2007; 69: 671-676
        • Igdem S.
        • Akpinar H.
        • Alco G.
        • Agacayak F.
        • Turkan S.
        • Okkan S.
        • et al.
        Implantation of fiducial markers for image guidance in prostate radiotherapy: patient-reported toxicity.
        Br J Radiol. 2009; 82: 941-945
        • Gill S.
        • Li J.
        • Thomas J.
        • Bressel M.
        • Thursky K.
        • Styles C.
        • et al.
        Patient-reported complications from fiducial marker implantation for prostate image-guided radiotherapy.
        Br J Radiol. 2012; 85: 1011-1017
        • Loh J.
        • Baker K.
        • Sridharan S.
        • Greer P.
        • Wratten C.
        • Capp A.
        • et al.
        Infections after fiducial marker implantation for prostate radiotherapy: are we underestimating the risks?.
        Radiat Oncol. 2015; 10: 38
        • Moman M.R.
        • van der Heide U.A.
        • Kotte A.N.
        • van Moorselaar R.J.
        • Bol G.H.
        • Franken S.P.
        • et al.
        Long-term experience with transrectal and transperineal implantations of fiducial gold markers in the prostate for position verification in external beam radiotherapy; feasibility, toxicity and quality of life.
        Radiother Oncol. 2010; 96: 38-42
        • Ng M.
        • Brown E.
        • Williams A.
        • Chao M.
        • Lawrentschuk N.
        • Chee R.
        Fiducial markers and spacers in prostate radiotherapy: current applications.
        BJU Int. 2014; 113: 13-20
        • Kably I.
        • Bordegaray M.
        • Shah K.
        • Salsamendi J.
        • Narayanan G.
        • et al.
        Single-center experience in prostate fiducial marker placement: technique and midterm follow-up.
        J Vasc Interv Radiol. 2014; 25: 1125-1132
        • Udrescu C.
        • De Bari B.
        • Rouvière O.
        • Ruffion A.
        • Michel-Amadry G.
        • Jalade P.
        • et al.
        Does hormone therapy modify the position of the gold markers in the prostate during irradiation? A daily evaluation with kV-images.
        Cancer Radiother. 2013; 17: 215-220
        • Mantz C.
        • et al.
        A phase II trial of stereotactic ablative body radiotherapy for low-risk prostate cancer using a non-robotic linear accelerator and real-time target tracking: report of toxicity, quality of life, and disease control outcomes with 5-year minimum follow-up.
        Front Oncol. 2014; 14: 279
        • Mok G.
        • Benz E.
        • Vallee J.
        • Miralbell R.
        • Zilli T.
        • et al.
        Optimization of radiation therapy techniques for prostate cancer with prostate-rectum spacers: a systematic review.
        Int J Radiat Oncol Biol Phys. 2014; 90: 278-288https://doi.org/10.1016/j.ijrobp.2014.06.044
        • Loblaw A.
        • Cheung P.
        • D’Alimonte L.
        • Deabreu A.
        • Mamedov A.
        • Zhang L.
        • et al.
        Prostate stereotactic ablative body radiotherapy using a standard linear accelerator: toxicity, biochemical, and pathological outcomes.
        Radiother Oncol. 2013; 107: 153-158
        • Prada P.J.
        • Gonzalez H.
        • Menéndez C.
        • Llaneza A.
        • Fernández J.
        • Santamarta E.
        • et al.
        Transperineal injection of hyaluronic acid in the anterior perirectal fat to decrease rectal toxicity from radiation delivered with low-dose-rate brachytherapy for prostate cancer patients.
        Brachytherapy. 2009; 8: 210-217
        • Wilder R.B.
        • Barme G.A.
        • Gilbert R.F.
        • Holevas R.E.
        • Kobashi L.I.
        • Reed R.R.
        • et al.
        Cross-linked hyaluronan gel reduces the acute rectal toxicity of radiotherapy for prostate cancer.
        Int J Radiat Oncol Biol Phys. 2010; 77: 824-830
        • Noyes W.R.
        • Hosford C.C.
        • Schultz S.E.
        • et al.
        Human collagen injections to reduce rectal dose during radiotherapy.
        Int J Radiat Oncol Biol Phys. 2012; 82: 1918-1922
        • Mariados N.
        • Sylvester J.
        • Shah D.
        • Karsh L.
        • Hudes R.
        • Beyer D.
        • et al.
        Hydrogel spacer prospective multicenter randomized controlled pivotal trial: dosimetric and clinical effects of perirectal spacer application in men undergoing IG-IMRT.
        Int J Radiat Oncol Biol Phys. 2015; 92: 971-977
        • Both S.
        • Wang K.K.
        • Plastaras J.P.
        • Deville C.
        • Bar Ad.V.
        • Tochner Z.
        • et al.
        Real-time study of prostate intrafraction motion during external beam radiotherapy with daily endorectal balloon.
        Int J Radiat Oncol Biol Phys. 2011; 81: 1302-1309
        • D’Amico A.V.
        • Manola J.
        • Loffredo M.
        • Lopes L.
        • Nissen K.
        • O’Farrell D.A.
        • et al.
        A practical method to achieve prostate gland immobilization and target verification for daily treatment.
        Int J Radiat Oncol Biol Phys. 2001; 51: 1431-1436
        • Van Lin E.N.
        • van der Vight L.P.
        • Witjes J.A.
        • Huisman H.J.
        • Leer J.W.
        • Visser A.G.
        The effect of an endorectal balloon and off-line correction on the interfraction systematic and random prostate position variations: a comparative study.
        Int J Radiat Oncol Biol Phys. 2005; 61: 278-288
        • Court L.E.
        • D’Amico A.V.
        • Kadam D.
        • Cormack R.
        • et al.
        Motion and shape change when using an endorectal balloon during prostate radiation therapy.
        Radiother Oncol. 2006; 81: 184-189
        • Wang C.W.
        • Chong F.C.
        • Lai M.K.
        • Pu Y.S.
        • Wu J.K.
        • Cheng J.C.
        Set-up errors due to endorectal balloon positioning in intensity modulated radiation therapy for prostate cancer.
        Radiother Oncol. 2007; 84: 177-184
        • Smeenk R.J.
        • Teh B.S.
        • Butler E.B.
        • van Lin E.N.
        • Kaanders J.H.
        • et al.
        Is there a role for endorectal balloons in prostate radiotherapy? A systematic review.
        Radiother Oncol. 2010; 95 (Epub 2010 May 5): 277-282https://doi.org/10.1016/j.radonc.2010.04.016
        • Ahmad S.
        • Vlachaki M.T.
        • Teslow T.N.
        • Amosson C.M.
        • McGary J.
        • Teh B.S.
        • et al.
        Impact of setup uncertainty in the dosimetry of prostate and surrounding tissues in prostate cancer patients treated with Peacock/IMRT.
        Med Dosim. 2005; 30: 1-7
        • Vlachaki M.T.
        • Teslow T.N.
        • Ahmad S.
        • et al.
        Impact of endorectal balloon in the dosimetry of prostate and surrounding tissues in prostate cancer patients treated with IMRT.
        Med Dosim. 2007; 32: 281-286
        • Patel R.R.
        • Orton N.
        • Tomé W.A.
        • Chappell R.
        • Ritter M.A.
        • et al.
        Rectal dose sparing with a balloon catheter and ultrasound localization in conformal radiation therapy for prostate cancer.
        Radiother Oncol. 2003; 67: 285-294
        • Sanghani M.V.
        • Ching J.
        • Schultz D.
        • Cormack R.
        • Loffredo M.
        • McMahon E.
        • et al.
        Impact on rectal dose from the use of a prostate immobilization and rectal localization device for patients receiving dose escalated 3D conformal radiation therapy.
        Urol Oncol. 2004; 22: 165-168
        • Van Lin E.N.
        • Kristinsson J.
        • Philippens M.E.
        • de Jong D.J.
        • van der Vight L.P.
        • Kaanders J.H.
        • et al.
        Reduced late rectal mucosal changes after prostate three-dimensional conformal radiotherapy with endorectal balloon as observed in repeated endoscopy.
        Int J Radiat Oncol Biol Phys. 2007; 67: 799-811
        • Goldner G.
        • Tomicek B.
        • Becker G.
        • Geinitz H.
        • Wachter S.
        • Zimmermann F.
        • et al.
        Proctitis after external-beam radiotherapy for prostate cancer classified by Vienna Rectoscopy Score and correlated with EORTC/RTOG score for late rectal toxicity: results of a prospective multicenter study of 166 patients.
        Int J Radiat Oncol Biol Phys. 2007; 67: 78-83
        • Goldner G.
        • Bombosch V.
        • Geinitz H.
        • Becker G.
        • Wachter S.
        • Glocker S.
        • et al.
        Moderate risk-adapted dose escalation with three-dimensional conformal radiotherapy of localized prostate cancer from 70 to 74 Gy. First report on 5-year morbidity and biochemical control from a prospective Austrian-German multicenter phase II trial.
        Strahlenther Onkol. 2009; 185: 94-100
        • Woel R.
        • Beard C.
        • Chen M.H.
        • Hurwitz M.
        • Loffredo M.
        • McMahon E.
        • et al.
        Acute gastrointestinal, genitourinary, and dermatological toxicity during dose-escalated 3D-conformal radiation therapy (3DCRT) using an intrarectal balloon for prostate gland localization and immobilization.
        Int J Radiat Oncol Biol Phys. 2005; 62: 392-396
        • D’Amico A.V.
        • Manola J.
        • McMahon E.
        • Loffredo M.
        • Lopes L.
        • Ching J.
        • et al.
        A prospective evaluation of rectal bleeding after dose-escalated three-dimensional conformal radiation therapy using an intrarectal balloon for prostate gland localization and immobilization.
        Urology. 2006; 67: 780-784
        • Slater J.D.
        • Rossi Jr, C.J.
        • Yonemoto L.T.
        • Bush D.A.
        • Jabola B.R.
        • Levy R.P.
        • et al.
        Proton therapy for prostate cancer: the initial Loma Linda University experience.
        Int J Radiat Oncol Biol Phys. 2004; 59: 348-352
        • Boike T.P.
        • Lotan Y.
        • Cho L.C.
        • Brindle J.
        • DeRose P.
        • Xie X.J.
        • et al.
        Phase I dose-escalation study of SBRT for low- and intermediate-risk prostate cancer.
        J Clin Oncol. 2011; 29: 2020-2026
        • King M.
        • Lehmann C.R.
        • Adler J.
        • et al.
        CyberKnife radiotherapy for localized prostate cancer: rationale and technical feasibility.
        Technol Cancer Res Treat. 2003; 2: 25-29
        • Hossain S.
        • Xia P.
        • Huang K.
        • et al.
        Dose gradient near target-normal structure interface for nonisocentric cyberknife and isocentric intensity-modulated body RT for prostate cancer.
        Int J Radiat Oncol Biol Phys. 2010; 78: 58-63
        • Fuller D.B.
        • Naitoh J.
        • Lee C.
        • Hardy S.
        • Jin H.
        • et al.
        Virtual HDR CyberKnife treatment for localized prostatic carcinoma: dosimetry comparison with HDR brachytherapy and preliminary clinical observations.
        Int J Radiat Oncol Biol Phys. 2008; 70: 1588-1597
        • McBride S.M.
        • Wong D.S.
        • Dombrowski J.J.
        • Harkins B.
        • Tapella P.
        • Hanscom H.N.
        • et al.
        Hypofractionated stereotactic body radiotherapy in low-risk prostate adenocarcinoma: preliminary results of a multi-institutional phase 1 feasibility trial.
        Cancer. 2012; 118: 3681-3690
        • Freeman D.E.
        • King C.R.
        • et al.
        Stereotactic body radiotherapy for low-risk prostate cancer: five-year outcomes.
        Radiat Oncol. 2011; 6: 3
        • Kang J.K.
        • Cho C.K.
        • Choi C.W.
        • Yoo S.
        • Kim M.S.
        • Yang K.
        • et al.
        Image-guided stereotactic body radiation therapy for localized prostate cancer.
        Tumori. 2011; 97: 43-48
        • King C.R.
        • Brooks J.D.
        • Gill H.
        • Presti Jr., J.C.
        • et al.
        Long-term outcomes from a prospective trial of stereotactic body radiotherapy for low-risk prostate cancer.
        Int J Radiat Oncol Biol Phys. 2012; 82: 877-882
        • Aluwini S.
        • van Rooij P.
        • Hoogeman M.
        • Kirkels W.
        • Kolkman-Deurloo I.K.
        • Bangma C.
        Stereotactic body radiotherapy with a focal boost to the MRI-visible tumor as monotherapy for low- and intermediate-risk prostate cancer: early results.
        Radiat Oncol. 2013; 9: 84
        • Bolzicco G.
        • Favretto M.S.
        • Satariano N.
        • Scremin E.
        • Tambone C.
        • Tasca A.
        A single-center study of 100 consecutive patients with localized prostate cancer treated with stereotactic body radiotherapy.
        BMC Urol. 2013; 17: 49
        • Chen L.N.
        • Suy S.
        • Uhm S.
        • Oermann E.K.
        • Ju A.W.
        • Chen V.
        • et al.
        Stereotactic body radiation therapy (SBRT) for clinically localized prostate cancer: the Georgetown University experience.
        Radiat Oncol. 2013; 13: 58
        • Ju A.W.
        • Wang H.
        • Oermann E.K.
        • Sherer B.A.
        • Uhm S.
        • Chen V.J.
        • et al.
        Hypofractionated stereotactic body radiation therapy as monotherapy for intermediate-risk prostate cancer.
        Radiat Oncol. 2013; 31: 30
        • Oliai C.
        • Lanciano R.
        • Sprandio B.
        • Yang J.
        • Lamond J.
        • Arrigo S.
        • et al.
        Stereotactic body radiation therapy for the primary treatment of localized prostate cancer.
        J Radiat Oncol. 2013; 2: 63-70
        • Arscott W.T.
        • Chen L.N.
        • Wilson N.
        • Bhagat A.
        • Kim J.S.
        • Moures R.A.
        • et al.
        Obstructive voiding symptoms following stereotactic body radiation therapy for prostate cancer.
        Radiat Oncol. 2014; 24: 163
        • Katz A.J.
        • Kang J.
        • et al.
        Quality of life and toxicity after SBRT for organ-confined prostate cancer, a 7-year study.
        Front Oncol. 2014; 28: 301https://doi.org/10.3389/fonc.2014.00301
        • Janowski E.
        • Chen L.N.
        • Kim J.S.
        • Lei S.
        • Suy S.
        • Collins B.
        • et al.
        Stereotactic body radiation therapy (SBRT) for prostate cancer in men with large prostates (⩾50 cm(3)).
        Radiat Oncol. 2014; 15: 241
        • Lee S.W.
        • Jang H.S.
        • Lee J.H.
        • Kim S.H.
        • Yoon S.C.
        • et al.
        Stereotactic body radiation therapy for prostate cancer patients with old age or medical comorbidity: a 5-year follow-up of an investigational study.
        Medicine (Baltimore). 2014; 93: e290
        • Tree A.C.
        • Ostler P.
        • Hoskin P.
        • Dankulchai P.
        • Nariyangadu P.
        • Hughes R.J.
        • et al.
        Prostate Stereotactic Body Radiotherapy - First UK Experience.
        Clin Oncol (R Coll Radiol). 2014; 26: 757-761https://doi.org/10.1016/j.clon.2014.08.007
        • Madsen B.L.
        • Hsi R.A.
        • Pham H.T.
        • Fowler J.F.
        • Esagui L.
        • Corman J.
        Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: first clinical trial results.
        Int J Radiat Oncol Biol Phys. 2007; 67: 1099-1105
        • Alongi F.
        • Cozzi L.
        • Arcangeli S.
        • Iftode C.
        • Comito T.
        • Villa E.
        • et al.
        Linac based SBRT for prostate cancer in 5 fractions with VMAT and flattening filter free beams: preliminary report of a phase II study.
        Radiat Oncol. 2013; 8: 171
        • Kim D.W.N.
        • Cho L.C.
        • Straka C.
        • Christie A.
        • Lotan Y.
        • Pistenmaa D.
        • et al.
        Predictors of rectal tolerance observed in a dose-escalated phase 1–2 trial of stereotactic body radiation therapy for prostate cancer.
        Int J Radiat Oncol Biol Phys. 2014; 89: 509-517https://doi.org/10.1016/j.ijrobp.2014.03.012
        • Hoppe B.S.
        • Nichols R.C.
        • Henderson R.H.
        • Morris C.G.
        • Williams C.R.
        • Costa J.
        • et al.
        Erectile function, incontinence, and other quality of life outcomes following protontherapy for prostate cancer in men 60 years old and younger.
        Cancer. 2012; 118 (Epub 2012 Jan 17): 4619-4626https://doi.org/10.1002/cncr.27398
        • Coen J.J.
        • Paly J.J.
        • Niemierko A.
        • Weyman E.
        • Rodrigues A.
        • Shipley W.U.
        • et al.
        Long-term quality of life outcome after proton beam monotherapy for localized prostate cancer.
        Int J Radiat Oncol Biol Phys. 2012; 82 (Epub 2011 May 27): e201-e209https://doi.org/10.1016/j.ijrobp.2011.03.048
        • Demanes D.J.
        • Rodriguez R.R.
        • Schour L.
        • Brandt D.
        • Altieri G.
        • et al.
        High-dose- rate intensity-modulated brachytherapy with external beam radiotherapy for prostate cancer: California endocurietherapy’s 10-year results.
        Int J Radiat Oncol Biol Phys. 2005; 61: 1306-1316
        • Frank S.J.
        • Pisters L.L.
        • Davis J.
        • Lee A.K.
        • Bassett R.
        • Kuban D.A.
        An assessment of quality of life following radical prostatectomy, high dose external beam radiation therapy and brachytherapy iodine implantation as monotherapies for localized prostate cancer.
        J Urol. 2007; 177: 2151-2156
        • King C.R.
        • Freeman D.
        • Kaplan I.
        • Fuller D.
        • Bolzicco G.
        • Collins S.
        • et al.
        Stereotactic body radiotherapy for localized prostate cancer: pooled analysis from a multi-institutional consortium of prospective phase II trials.
        Radiother Oncol. 2013; 109: 217-221
        • King C.R.
        • Collins S.
        • Fuller D.
        • Wang P.C.
        • Kupelian P.
        • Steinberg M.
        • et al.
        Health-related quality of life after stereotactic body radiation therapy for localized prostate cancer: results from a multi-institutional consortium of prospective trials.
        Int J Radiat Oncol Biol Phys. 2013; 87: 939-945
        • Sanda M.G.
        • Dunn R.L.
        • Michalski J.
        • Sandler H.M.
        • Northouse L.
        • Hembroff L.
        • et al.
        Quality of life and satisfaction with outcome among prostate-cancer survivors.
        N Engl J Med. 2008; 358: 1250-1261
        • Yu J.B.
        • Cramer L.D.
        • Herrin J.
        • Soulos P.R.
        • Potosky A.L.
        • Gross C.P.
        Stereotactic body radiation therapy versus intensity-modulated radiation therapy for prostate cancer: comparison of toxicity.
        J Clin Oncol. 2014; 32: 1195-1201
        • Arcangeli S.
        • De Bari B.
        • Alongi F.
        • et al.
        Toxicity of stereotactic body radiation therapy versus intensity-modulated radiation therapy for prostate cancer: a potential comparison bias.
        J Clin Oncol. 2014; 32: 3454
        • Evans J.R.
        • Zhao S.
        • Daignault S.
        • Sanda M.G.
        • Michalski J.
        • Sandler H.M.
        • et al.
        Patient-reported quality of life after stereotactic body radiotherapy (SBRT), intensity modulated radiotherapy (IMRT), and brachytherapy.
        Radiother Oncol. 2015; 116: 179-184
        • Botrel T.E.
        • Clark O.
        • Pompeo A.C.
        • Bretas F.F.
        • Sadi M.V.
        • Ferreira U.
        • et al.
        Hypofractionated external-beam radiation therapy (HEBRT) versus conventional external-beam radiation (CEBRT) in patients with localized prostate cancer: a systematic review and meta-analysis.
        Core Evid. 2013; 8: 1-13
      1. Available at https://clinicaltrials.gov/. Accessed online on 30/04/2016.

      2. Available at http://www.isrctn.com/ISRCTN45905321. Accessed online on 30/04/2016.

        • Baker B.R.
        • Basak R.
        • BMohiuddinand J.J.
        • Chen R.C.
        • et al.
        Use of stereotactic body radiotherapy for prostate cancer in the United States from through 2012.
        Cancer. 2004; 2016https://doi.org/10.1002/cncr.30034
      3. National Comprehensive Cancer Network (NCCN) guidelines. Available online on the website http://www.nccn.org/index.asp. Accessed online on 27/03/2016.

        • Antognoni P.
        • Bertoni F.
        • D’Angelillo R.M.
        • Jereczek-Fossa B.A.
        • Magrini S.M.
        • Santoni R.
        Linee Guida AIRO 2016: Carcinoma della Prostata.
        Tumori. 1 July 2016; (special issue)