Advertisement

Bridging cancer biology and the patients' needs with nanotechnology-based approaches

  • Nuno A. Fonseca
    Affiliations
    CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal

    FFUC – Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
    Search for articles by this author
  • Ana C. Gregório
    Affiliations
    CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal

    IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão – Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
    Search for articles by this author
  • Ângela Valério-Fernandes
    Affiliations
    CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal

    IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão – Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
    Search for articles by this author
  • Sérgio Simões
    Affiliations
    CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal

    FFUC – Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
    Search for articles by this author
  • João N. Moreira
    Correspondence
    Corresponding author at: CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal.
    Affiliations
    CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal

    FFUC – Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
    Search for articles by this author
Published:March 10, 2014DOI:https://doi.org/10.1016/j.ctrv.2014.02.002

      Abstract

      Cancer remains as stressful condition and a leading cause of death in the western world. Actual cornerstone treatments of cancer disease rest as an elusive alternative, offering limited efficacy with extensive secondary effects as a result of severe cytotoxic effects in healthy tissues. The advent of nanotechnology brought the promise to revolutionize many fields including oncology, proposing advanced systems for cancer treatment. Drug delivery systems rest among the most successful examples of nanotechnology. Throughout time they have been able to evolve as a function of an increased understanding from cancer biology and the tumor microenvironment. Marketing of Doxil® unleashed a remarkable impulse in the development of drug delivery systems. Since then, several nanocarriers have been introduced, with aspirations to overrule previous technologies, demonstrating increased therapeutic efficacy besides decreased toxicity. Spatial and temporal targeting to cancer cells has been explored, as well as the use of drug combinations co-encapsulated in the same particle as a mean to take advantage of synergistic interactions in vivo. Importantly, targeted delivery of siRNA for gene silencing therapy has made its way to the clinic for a “first in man” trial using lipid-polymeric-based particles. Focusing in state-of-the-art technology, this review will provide an insightful vision on nanotechnology-based strategies for cancer treatment, approaching them from a tumor biology-driven perspective, since their early EPR-based dawn to the ones that have truly the potential to address unmet medical needs in the field of oncology, upon targeting key cell subpopulations from the tumor microenvironment.

      Keywords

      To read this article in full you will need to make a payment
      ESMO Member Login
      Login with your ESMO username and password.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jemal A.
        • Siegel R.
        • Ward E.
        • Murray T.
        • Xu J.
        • Smigal C.
        • et al.
        Cancer statistics, 2006.
        CA Cancer J Clin. 2006; 56: 106-130
        • Jemal A.
        • Bray F.
        • Center M.M.
        • Ferlay J.
        • Ward E.
        • Forman D.
        Global cancer statistics.
        CA Cancer J Clin. 2011; 61: 69-90
        • Siegel R.
        • Naishadham D.
        • Jemal A.
        Cancer statistics, 2013.
        CA Cancer J Clin. 2013; 63: 11-30
        • Jordan M.A.
        • Thrower D.
        • Wilson L.
        Mechanism of inhibition of cell proliferation by Vinca alkaloids.
        Cancer Res. 1991; 51: 2212-2222
        • Miller M.L.
        • Ojima I.
        Chemistry and chemical biology of taxane anticancer agents.
        Chem Rec. 2001; 1: 195-211
        • Minotti G.
        • Menna P.
        • Salvatorelli E.
        • Cairo G.
        • Gianni L.
        Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity.
        Pharmacol Rev. 2004; 56: 185-229
        • Hanahan D.
        • Weinberg R.A.
        The hallmarks of cancer.
        Cell. 2000; 100: 57-70
        • Hanahan D.
        • Weinberg R.A.
        Hallmarks of cancer: the next generation.
        Cell. 2011; 144: 646-674
        • Gottesman M.M.
        Mechanisms of cancer drug resistance.
        Annu Rev Med. 2002; 53: 615-627
        • Ranganathan R.
        • Madanmohan S.
        • Kesavan A.
        • Baskar G.
        • Krishnamoorthy Y.R.
        • Santosham R.
        • et al.
        Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications.
        Int J Nanomed. 2012; 7: 1043-1060
        • Peer D.
        • Karp J.M.
        • Hong S.
        • Farokhzad O.C.
        • Margalit R.
        • Langer R.
        Nanocarriers as an emerging platform for cancer therapy.
        Nat Nanotechnol. 2007; 2: 751-760
        • Duncan R.
        • Gaspar R.
        Nanomedicine(s) under the microscope.
        Mol Pharm. 2011; 8: 2101-2141
        • Wang A.Z.
        • Langer R.
        • Farokhzad O.C.
        Nanoparticle delivery of cancer drugs.
        Annu Rev Med. 2012; 63: 185-198
        • Gabizon A.
        • Dagan A.
        • Goren D.
        • Barenholz Y.
        • Fuks Z.
        Liposomes as in vivo carriers of adriamycin: reduced cardiac uptake and preserved antitumor activity in mice.
        Cancer Res. 1982; 42: 4734-4739
        • Gabizon A.
        • Chisin R.
        • Amselem S.
        • Druckmann S.
        • Cohen R.
        • Goren D.
        • et al.
        Pharmacokinetic and imaging studies in patients receiving a formulation of liposome-associated adriamycin.
        Br J Cancer. 1991; 64: 1125-1132
        • Immordino M.L.
        • Dosio F.
        • Cattel L.
        Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential.
        Int J Nanomed. 2006; 1: 297-315
        • Barenholz Y.
        Doxil(R)–the first FDA-approved nano-drug: lessons learned.
        J Control Release. 2012; 160: 117-134
        • Papahadjopoulos D.
        • Allen T.M.
        • Gabizon A.
        • Mayhew E.
        • Matthay K.
        • Huang S.K.
        • et al.
        Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy.
        Proc Natl Acad Sci U S A. 1991; 88: 11460-11464
        • Lasic D.D.
        • Martin F.J.
        • Gabizon A.
        • Huang S.K.
        • Papahadjopoulos D.
        Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times.
        Biochim Biophys Acta. 1991; 1070: 187-192
        • Sapra P.
        • Allen T.M.
        Ligand-targeted liposomal anticancer drugs.
        Prog Lipid Res. 2003; 42: 439-462
        • Maeda H.
        Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects.
        Bioconjug Chem. 2010; 21: 797-802
        • Maeda H.
        • Matsumura Y.
        EPR effect based drug design and clinical outlook for enhanced cancer chemotherapy.
        Adv Drug Deliv Rev. 2011; 63: 129-130
        • Matsumura Y.
        • Maeda H.
        A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs.
        Cancer Res. 1986; 46: 6387-6392
        • Allen T.M.
        • Hansen C.
        Pharmacokinetics of stealth versus conventional liposomes: effect of dose.
        Biochim Biophys Acta. 1991; 1068: 133-141
        • Gabizon A.
        • Catane R.
        • Uziely B.
        • Kaufman B.
        • Safra T.
        • Cohen R.
        • et al.
        Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes.
        Cancer Res. 1994; 54: 987-992
        • Schroeder A.
        • Heller D.A.
        • Winslow M.M.
        • Dahlman J.E.
        • Pratt G.W.
        • Langer R.
        • et al.
        Treating metastatic cancer with nanotechnology.
        Nat Rev Cancer. 2012; 12: 39-50
        • O’Brien M.E.
        • Wigler N.
        • Inbar M.
        • Rosso R.
        • Grischke E.
        • Santoro A.
        • et al.
        Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer.
        Ann Oncol. 2004; 15: 440-449
        • Kurtz J.E.
        • Kaminsky M.C.
        • Floquet A.
        • Veillard A.S.
        • Kimmig R.
        • Dorum A.
        • et al.
        Ovarian cancer in elderly patients: carboplatin and pegylated liposomal doxorubicin versus carboplatin and paclitaxel in late relapse: a Gynecologic Cancer Intergroup (GCIG) CALYPSO sub-study.
        Ann Oncol. 2011; 22: 2417-2423
        • Berenson J.R.
        • Yellin O.
        • Chen C.S.
        • Patel R.
        • Bessudo A.
        • Boccia R.V.
        • et al.
        A modified regimen of pegylated liposomal doxorubicin, bortezomib and dexamethasone (DVD) is effective and well tolerated for previously untreated multiple myeloma patients.
        Br J Haematol. 2011; 155: 580-587
        • Chen P.Y.
        • Ozawa T.
        • Drummond D.C.
        • Kalra A.
        • Fitzgerald J.B.
        • Kirpotin D.B.
        • et al.
        Comparing routes of delivery for nanoliposomal irinotecan shows superior anti-tumor activity of local administration in treating intracranial glioblastoma xenografts.
        Neuro Oncol. 2013; 15: 189-197
        • Drummond D.C.
        • Noble C.O.
        • Guo Z.
        • Hong K.
        • Park J.W.
        • Kirpotin D.B.
        Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy.
        Cancer Res. 2006; 66: 3271-3277
        • Gomes-da-Silva L.C.
        • Simoes S.
        • Moreira J.N.
        Challenging the future of siRNA therapeutics against cancer: the crucial role of nanotechnology.
        Cell Mol Life Sci. 2013;
        • Gomes-da-Silva L.C.
        • Fonseca N.A.
        • Moura V.
        • Pedroso de Lima M.C.
        • Simoes S.
        • Moreira J.N.
        Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges.
        Acc Chem Res. 2012; 45: 1163-1171
        • Chonn A.
        • Semple S.C.
        • Cullis P.R.
        Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes.
        J Biol Chem. 1992; 267: 18759-18765
        • Gabizon A.
        • Shiota R.
        • Papahadjopoulos D.
        Pharmacokinetics and tissue distribution of doxorubicin encapsulated in stable liposomes with long circulation times.
        J Natl Cancer Inst. 1989; 81: 1484-1488
        • Allen T.M.
        • Austin G.A.
        • Chonn A.
        • Lin L.
        • Lee K.C.
        Uptake of liposomes by cultured mouse bone marrow macrophages: influence of liposome composition and size.
        Biochim Biophys Acta. 1991; 1061: 56-64
        • Leonard R.C.
        • Williams S.
        • Tulpule A.
        • Levine A.M.
        • Oliveros S.
        Improving the therapeutic index of anthracycline chemotherapy: focus on liposomal doxorubicin (Myocet).
        Breast. 2009; 18: 218-224
        • Swenson C.E.
        • Bolcsak L.E.
        • Batist G.
        • Guthrie Jr., T.H.
        • Tkaczuk K.H.
        • Boxenbaum H.
        • et al.
        Pharmacokinetics of doxorubicin administered i.v. as Myocet (TLC D-99; liposome-encapsulated doxorubicin citrate) compared with conventional doxorubicin when given in combination with cyclophosphamide in patients with metastatic breast cancer.
        Anticancer Drugs. 2003; 14: 239-246
        • Harris L.
        • Batist G.
        • Belt R.
        • Rovira D.
        • Navari R.
        • Azarnia N.
        • et al.
        Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as first-line therapy of metastatic breast carcinoma.
        Cancer. 2002; 94: 25-36
        • Batist G.
        • Ramakrishnan G.
        • Rao C.S.
        • Chandrasekharan A.
        • Gutheil J.
        • Guthrie T.
        • et al.
        Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer.
        J Clin Oncol. 2001; 19: 1444-1454
        • Petre C.E.
        • Dittmer D.P.
        Liposomal daunorubicin as treatment for Kaposi’s sarcoma.
        Int J Nanomed. 2007; 2: 277-288
        • Gill P.S.
        • Espina B.M.
        • Muggia F.
        • Cabriales S.
        • Tulpule A.
        • Esplin J.A.
        • et al.
        Phase I/II clinical and pharmacokinetic evaluation of liposomal daunorubicin.
        J Clin Oncol. 1995; 13: 996-1003
        • Kaspers G.J.
        • Zimmermann M.
        • Reinhardt D.
        • Gibson B.E.
        • Tamminga R.Y.
        • Aleinikova O.
        • et al.
        Improved outcome in pediatric relapsed acute myeloid leukemia: results of a randomized trial on liposomal daunorubicin by the International BFM Study Group.
        J Clin Oncol. 2013; 31: 599-607
        • Thomas D.A.
        • Kantarjian H.M.
        • Stock W.
        • Heffner L.T.
        • Faderl S.
        • Garcia-Manero G.
        • et al.
        Phase 1 multicenter study of vincristine sulfate liposomes injection and dexamethasone in adults with relapsed or refractory acute lymphoblastic leukemia.
        Cancer. 2009; 115: 5490-5498
        • Thomas D.A.
        • Sarris A.H.
        • Cortes J.
        • Faderl S.
        • O’Brien S.
        • Giles F.J.
        • et al.
        Phase II study of sphingosomal vincristine in patients with recurrent or refractory adult acute lymphocytic leukemia.
        Cancer. 2006; 106: 120-127
        • Bangham A.D.
        • Standish M.M.
        • Watkins J.C.
        Diffusion of univalent ions across the lamellae of swollen phospholipids.
        J Mol Biol. 1965; 13: 238-252
        • Duncan R.
        Polymer conjugates for drug targeting. From inspired to inspiration!.
        J Drug Target. 2006; 14: 333-335
        • Duncan R.
        • Ringsdorf H.
        • Satchi-Fainaro R.
        Polymer therapeutics–polymers as drugs, drug and protein conjugates and gene delivery systems: past, present and future opportunities.
        J Drug Target. 2006; 14: 337-341
        • Yu M.K.
        • Park J.
        • Jon S.
        Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy.
        Theranostics. 2012; 2: 3-44
        • Fuertges F.
        • Abuchowski A.
        The clinical efficacy of poly(ethylene glycol)-modified proteins.
        J Control Release. 1990; 11: 139-148
        • Harris J.M.
        • Chess R.B.
        Effect of pegylation on pharmaceuticals.
        Nat Rev Drug Discov. 2003; 2: 214-221
        • Farokhzad O.C.
        • Langer R.
        Impact of nanotechnology on drug delivery.
        ACS Nano. 2009; 3: 16-20
        • Kamaly N.
        • Xiao Z.
        • Valencia P.M.
        • Radovic-Moreno A.F.
        • Farokhzad O.C.
        Targeted polymeric therapeutic nanoparticles: design, development and clinical translation.
        Chem Soc Rev. 2012; 41: 2971-3010
        • Romberg B.
        • Hennink W.E.
        • Storm G.
        Sheddable coatings for long-circulating nanoparticles.
        Pharm Res. 2008; 25: 55-71
        • Levy Y.
        • Hershfield M.S.
        • Fernandez-Mejia C.
        • Polmar S.H.
        • Scudiery D.
        • Berger M.
        • et al.
        Adenosine deaminase deficiency with late onset of recurrent infections: response to treatment with polyethylene glycol-modified adenosine deaminase.
        J Pediatr. 1988; 113: 312-317
        • Graham M.L.
        Pegaspargase: a review of clinical studies.
        Adv Drug Deliv Rev. 2003; 55: 1293-1302
        • Molineux G.
        The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta).
        Curr Pharm Des. 2004; 10: 1235-1244
        • Ringsdorf H.
        Structure and properties of pharmacologically active polymers.
        J Polym Sci Polym Symp. 1975; 51: 135-153
        • de Duve C.
        • de Barsy T.
        • Poole B.
        • Trouet A.
        • Tulkens P.
        • Van Hoof F.
        Commentary. Lysosomotropic agents.
        Biochem Pharmacol. 1974; 23: 2495-2531
        • Vicent M.J.
        • Duncan R.
        Polymer conjugates: nanosized medicines for treating cancer.
        Trends Biotechnol. 2006; 24: 39-47
        • Duncan R.
        Polymer therapeutics as nanomedicines: new perspectives.
        Curr Opin Biotechnol. 2011; 22: 492-501
        • Vicent M.J.
        • Ringsdorf H.
        • Duncan R.
        Polymer therapeutics: clinical applications and challenges for development.
        Adv Drug Deliv Rev. 2009; 61: 1117-1120
        • Vasey P.A.
        • Kaye S.B.
        • Morrison R.
        • Twelves C.
        • Wilson P.
        • Duncan R.
        • et al.
        Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee.
        Clin Cancer Res. 1999; 5: 83-94
        • Duncan R.
        Polymer conjugates as anticancer nanomedicines.
        Nat Rev Cancer. 2006; 6: 688-701
        • Duncan R.
        Development of HPMA copolymer–anticancer conjugates: clinical experience and lessons learnt.
        Adv Drug Deliv Rev. 2009; 61: 1131-1148
        • Rademaker-Lakhai J.M.
        • Terret C.
        • Howell S.B.
        • Baud C.M.
        • De Boer R.F.
        • Pluim D.
        • et al.
        A Phase I and pharmacological study of the platinum polymer AP5280 given as an intravenous infusion once every 3 weeks in patients with solid tumors.
        Clin Cancer Res. 2004; 10: 3386-3395
        • Boddy A.V.
        • Plummer E.R.
        • Todd R.
        • Sludden J.
        • Griffin M.
        • Robson L.
        • et al.
        A phase I and pharmacokinetic study of paclitaxel poliglumex (XYOTAX), investigating both 3-weekly and 2-weekly schedules.
        Clin Cancer Res. 2005; 11: 7834-7840
        • Singer J.W.
        • Baker B.
        • De Vries P.
        • Kumar A.
        • Shaffer S.
        • Vawter E.
        • et al.
        Poly-(l)-glutamic acid-paclitaxel (CT-2103) [XYOTAX], a biodegradable polymeric drug conjugate: characterization, preclinical pharmacology, and preliminary clinical data.
        Adv Exp Med Biol. 2003; 519: 81-99
        • Galic V.L.
        • Wright J.D.
        • Lewin S.N.
        • Herzog T.J.
        Paclitaxel poliglumex for ovarian cancer.
        Expert Opin Investig Drugs. 2011; 20: 813-821
        • Svenson S.
        • Wolfgang M.
        • Hwang J.
        • Ryan J.
        • Eliasof S.
        Preclinical to clinical development of the novel camptothecin nanopharmaceutical CRLX101.
        J Control Release. 2011; 153: 49-55
        • Young C.
        • Schluep T.
        • Hwang J.
        • Eliasof S.
        CRLX101 (formerly IT-101) – a novel nanopharmaceutical of camptothecin in clinical development.
        Curr Bioact Compd. 2011; 7: 8-14
        • Weiss G.J.
        • Chao J.
        • Neidhart J.D.
        • Ramanathan R.K.
        • Bassett D.
        • Neidhart J.A.
        • Choi C.H.
        • Chow W.
        • Chung V.
        • Forman S.J.
        • Garmey E.
        • Hwang J.
        • Kalinoski D.L.
        • Koczywas M.
        • Longmate J.
        • Melton R.J.
        • Morgan R.
        • Oliver J.
        • Peterkin J.J.
        • Ryan J.L.
        • Schluep T.
        • Synold T.W.
        • Twardowski P.
        • Davis M.E.
        • Yen Y.
        First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies.
        Invest New Drugs. 2013; 31: 986-1000
        • Matsumura Y.
        Poly (amino acid) micelle nanocarriers in preclinical and clinical studies.
        Adv Drug Deliv Rev. 2008; 60: 899-914
        • Matsumura Y.
        • Hamaguchi T.
        • Ura T.
        • Muro K.
        • Yamada Y.
        • Shimada Y.
        • et al.
        Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin.
        Br J Cancer. 2004; 91: 1775-1781
        • Hamaguchi T.
        • Kato K.
        • Yasui H.
        • Morizane C.
        • Ikeda M.
        • Ueno H.
        • et al.
        A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation.
        Br J Cancer. 2007; 97: 170-176
        • Valle J.W.
        • Armstrong A.
        • Newman C.
        • Alakhov V.
        • Pietrzynski G.
        • Brewer J.
        • et al.
        A phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction.
        Invest New Drugs. 2011; 29: 1029-1037
        • Kim T.Y.
        • Kim D.W.
        • Chung J.Y.
        • Shin S.G.
        • Kim S.C.
        • Heo D.S.
        • et al.
        Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies.
        Clin Cancer Res. 2004; 10: 3708-3716
        • Oerlemans C.
        • Bult W.
        • Bos M.
        • Storm G.
        • Nijsen J.F.
        • Hennink W.E.
        Polymeric micelles in anticancer therapy: targeting, imaging and triggered release.
        Pharm Res. 2010; 27: 2569-2589
        • Lorusso D.
        • Di Stefano A.
        • Carone V.
        • Fagotti A.
        • Pisconti S.
        • Scambia G.
        Pegylated liposomal doxorubicin-related palmar-plantar erythrodysesthesia (‘hand-foot’ syndrome).
        Ann Oncol. 2007; 18: 1159-1164
        • Prabhakar U.
        • Maeda H.
        • Jain R.K.
        • Sevick-Muraca E.M.
        • Zamboni W.
        • Farokhzad O.C.
        • et al.
        Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology.
        Cancer Res. 2013; 73: 2412-2417
        • Duncan R.
        • Vicent M.J.
        Polymer therapeutics-prospects for 21st century: the end of the beginning.
        Adv Drug Deliv Rev. 2013; 65: 60-70
        • Drummond D.C.
        • Zignani M.
        • Leroux J.
        Current status of pH-sensitive liposomes in drug delivery.
        Prog Lipid Res. 2000; 39: 409-460
        • Simoes S.
        • Moreira J.N.
        • Fonseca C.
        • Duzgunes N.
        • de Lima M.C.
        On the formulation of pH-sensitive liposomes with long circulation times.
        Adv Drug Deliv Rev. 2004; 56: 947-965
        • Karanth H.
        • Murthy R.S.
        PH-sensitive liposomes–principle and application in cancer therapy.
        J Pharm Pharmacol. 2007; 59: 469-483
        • Ishida T.
        • Okada Y.
        • Kobayashi T.
        • Kiwada H.
        Development of pH-sensitive liposomes that efficiently retain encapsulated doxorubicin (DXR) in blood.
        Int J Pharm. 2006; 309: 94-100
        • Needham D.
        • Anyarambhatla G.
        • Kong G.
        • Dewhirst M.W.
        A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model.
        Cancer Res. 2000; 60: 1197-1201
        • Needham D.
        • Dewhirst M.W.
        The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors.
        Adv Drug Deliv Rev. 2001; 53: 285-305
        • Gaber M.H.
        • Hong K.
        • Huang S.K.
        • Papahadjopoulos D.
        Thermosensitive sterically stabilized liposomes: formulation and in vitro studies on mechanism of doxorubicin release by bovine serum and human plasma.
        Pharm Res. 1995; 12: 1407-1416
        • Gaber M.H.
        • Wu N.Z.
        • Hong K.
        • Huang S.K.
        • Dewhirst M.W.
        • Papahadjopoulos D.
        Thermosensitive liposomes: extravasation and release of contents in tumor microvascular networks.
        Int J Radiat Oncol Biol Phys. 1996; 36: 1177-1187
        • Poon R.T.
        • Borys N.
        Lyso-thermosensitive liposomal doxorubicin: an adjuvant to increase the cure rate of radiofrequency ablation in liver cancer.
        Future Oncol. 2011; 7: 937-945
        • Pinto A.C.
        • Moreira J.N.
        • Simoes S.
        Liposomal imatinib-mitoxantrone combination: formulation development and therapeutic evaluation in an animal model of prostate cancer.
        Prostate. 2011; 71: 81-90
        • Mayer L.D.
        • Harasym T.O.
        • Tardi P.G.
        • Harasym N.L.
        • Shew C.R.
        • Johnstone S.A.
        • et al.
        Ratiometric dosing of anticancer drug combinations: controlling drug ratios after systemic administration regulates therapeutic activity in tumor-bearing mice.
        Mol Cancer Ther. 2006; 5: 1854-1863
        • Feldman E.J.
        • Lancet J.E.
        • Kolitz J.E.
        • Ritchie E.K.
        • Roboz G.J.
        • List A.F.
        • et al.
        First-in-man study of CPX-351: a liposomal carrier containing cytarabine and daunorubicin in a fixed 5:1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia.
        J Clin Oncol. 2011; 29: 979-985
        • Tardi P.
        • Johnstone S.
        • Harasym N.
        • Xie S.
        • Harasym T.
        • Zisman N.
        • et al.
        In vivo maintenance of synergistic cytarabine:daunorubicin ratios greatly enhances therapeutic efficacy.
        Leuk Res. 2009; 33: 129-139
        • Noda K.
        • Nishiwaki Y.
        • Kawahara M.
        • Negoro S.
        • Sugiura T.
        • Yokoyama A.
        • et al.
        Irinotecan plus cisplatin compared with etoposide plus cisplatin for extensive small-cell lung cancer.
        N Engl J Med. 2002; 346: 85-91
        • Tardi P.G.
        • Dos Santos N.
        • Harasym T.O.
        • Johnstone S.A.
        • Zisman N.
        • Tsang A.W.
        • et al.
        Drug ratio-dependent antitumor activity of irinotecan and cisplatin combinations in vitro and in vivo.
        Mol Cancer Ther. 2009; 8: 2266-2275
        • Hamaguchi T.
        • Matsumura Y.
        • Nakanishi Y.
        • Muro K.
        • Yamada Y.
        • Shimada Y.
        • et al.
        Antitumor effect of MCC-465, pegylated liposomal doxorubicin tagged with newly developed monoclonal antibody GAH, in colorectal cancer xenografts.
        Cancer Sci. 2004; 95: 608-613
        • Matsumura Y.
        • Gotoh M.
        • Muro K.
        • Yamada Y.
        • Shirao K.
        • Shimada Y.
        • et al.
        Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer.
        Ann Oncol. 2004; 15: 517-525
        • Suzuki R.
        • Takizawa T.
        • Kuwata Y.
        • Mutoh M.
        • Ishiguro N.
        • Utoguchi N.
        • et al.
        Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome.
        Int J Pharm. 2008; 346: 143-150
        • Xu L.
        • Tang W.H.
        • Huang C.C.
        • Alexander W.
        • Xiang L.M.
        • Pirollo K.F.
        • et al.
        Systemic p53 gene therapy of cancer with immunolipoplexes targeted by anti-transferrin receptor scFv.
        Mol Med. 2001; 7: 723-734
        • Reynolds J.G.
        • Geretti E.
        • Hendriks B.S.
        • Lee H.
        • Leonard S.C.
        • Klinz S.G.
        • et al.
        HER2-targeted liposomal doxorubicin displays enhanced anti-tumorigenic effects without associated cardiotoxicity.
        Toxicol Appl Pharmacol. 2012; 262: 1-10
        • Davis M.E.
        The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic.
        Mol Pharm. 2009; 6: 659-668
        • Moura V.
        • Lacerda M.
        • Figueiredo P.
        • Corvo M.L.
        • Cruz M.E.
        • Soares R.
        • et al.
        Targeted and intracellular triggered delivery of therapeutics to cancer cells and the tumor microenvironment: impact on the treatment of breast cancer.
        Breast Cancer Res Treat. 2012; 133: 61-73
        • Hovanessian A.G.
        • Soundaramourty C.
        • Khoury D.E.
        • Nondier I.
        • Svab J.
        • Krust B.
        Surface expressed nucleolin is constantly induced in tumor cells to mediate calcium-dependent ligand internalization.
        PLoS One. 2010; 5: e15787
        • Christian S.
        • Pilch J.
        • Akerman M.E.
        • Porkka K.
        • Laakkonen P.
        • Ruoslahti E.
        Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels.
        J Cell Biol. 2003; 163: 871-878
        • Gomes-da-Silva L.C.
        • Ramalho J.S.
        • Pedroso de Lima M.C.
        • Simoes S.
        • Moreira J.N.
        Impact of anti-PLK1 siRNA-containing F3-targeted liposomes on the viability of both cancer and endothelial cells.
        Eur J Pharm Biopharm. 2013; 85: 356-364
        • Gomes-da-Silva L.C.
        • Fernandez Y.
        • Abasolo I.
        • Schwartz Jr., S.
        • Ramalho J.S.
        • Pedroso de Lima M.C.
        • Simoes S.
        • Moreira J.N.
        Efficient intracellular delivery of siRNA with a safe multitargeted lipid-based nanoplatform.
        Nanomedicine (Lond). 2013; 8: 1397-1413
        • Gomes-da-Silva L.C.
        • Santos A.O.
        • Bimbo L.M.
        • Moura V.
        • Ramalho J.S.
        • Lima M.C.
        • Simoes S.
        • Moreira J.N.
        Towards a siRNA-containing nanoparticle targeted to breast cancer cells and the tumor microenvironment.
        Int J Pharm. 2012; 434: 9-19
        • Pastorino F.
        • Brignole C.
        • Loi M.
        • Di Paolo D.
        • Di Fiore A.
        • Perri P.
        • et al.
        Nanocarrier-mediated targeting of tumor and tumor vascular cells improves uptake and penetration of drugs into neuroblastoma.
        Front Oncol. 2013; 3: 190
        • Loi M.
        • Marchio S.
        • Becherini P.
        • Di Paolo D.
        • Soster M.
        • Curnis F.
        • Brignole C.
        • Pagnan G.
        • Perri P.
        • Caffa I.
        • Longhi R.
        • Nico B.
        • Bussolino F.
        • Gambini C.
        • Ribatti D.
        • Cilli M.
        • Arap W.
        • Pasqualini R.
        • Allen T.M.
        • Corti A.
        • Ponzoni M.
        • Pastorino F.
        Combined targeting of perivascular and endothelial tumor cells enhances anti-tumor efficacy of liposomal chemotherapy in neuroblastoma.
        J Control Release. 2010; 145: 66-73
        • Shi J.
        • Xiao Z.
        • Kamaly N.
        • Farokhzad O.C.
        Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation.
        Acc Chem Res. 2011; 44: 1123-1134
        • Hrkach J.
        • Von Hoff D.
        • Mukkaram Ali M.
        • Andrianova E.
        • Auer J.
        • Campbell T.
        • et al.
        Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile.
        Sci Transl Med. 2012; 4: 128ra139
        • Chang S.S.
        • Reuter V.E.
        • Heston W.D.
        • Bander N.H.
        • Grauer L.S.
        • Gaudin P.B.
        Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature.
        Cancer Res. 1999; 59: 3192-3198
        • Gradishar W.J.
        • Tjulandin S.
        • Davidson N.
        • Shaw H.
        • Desai N.
        • Bhar P.
        • et al.
        Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer.
        J Clin Oncol. 2005; 23: 7794-7803
        • Gradishar W.J.
        Albumin-bound paclitaxel: a next-generation taxane.
        Expert Opin Pharmacother. 2006; 7: 1041-1053
        • Gradishar W.J.
        Albumin-bound nanoparticle paclitaxel.
        Clin Adv Hematol Oncol. 2005; 3: 348-349
        • Montana M.
        • Ducros C.
        • Verhaeghe P.
        • Terme T.
        • Vanelle P.
        • Rathelot P.
        Albumin-bound paclitaxel: the benefit of this new formulation in the treatment of various cancers.
        J Chemother. 2011; 23: 59-66
        • Wagner V.
        • Dullaart A.
        • Bock A.K.
        • Zweck A.
        The emerging nanomedicine landscape.
        Nat Biotechnol. 2006; 24: 1211-1217
        • Etheridge M.L.
        • Campbell S.A.
        • Erdman A.G.
        • Haynes C.L.
        • Wolf S.M.
        • McCullough J.
        The big picture on nanomedicine: the state of investigational and approved nanomedicine products.
        Nanomedicine. 2012; 9: 1-14