A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension

Published:February 20, 2012DOI:


      Methionine is an essential amino acid with many key roles in mammalian metabolism such as protein synthesis, methylation of DNA and polyamine synthesis. Restriction of methionine may be an important strategy in cancer growth control particularly in cancers that exhibit dependence on methionine for survival and proliferation. Methionine dependence in cancer may be due to one or a combination of deletions, polymorphisms or alterations in expression of genes in the methionine de novo and salvage pathways. Cancer cells with these defects are unable to regenerate methionine via these pathways. Defects in the metabolism of folate may also contribute to the methionine dependence phenotype in cancer. Selective killing of methionine dependent cancer cells in co-culture with normal cells has been demonstrated using culture media deficient in methionine. Several animal studies utilizing a methionine restricted diet have reported inhibition of cancer growth and extension of a healthy life-span. In humans, vegan diets, which can be low in methionine, may prove to be a useful nutritional strategy in cancer growth control. The development of methioninase which depletes circulating levels of methionine may be another useful strategy in limiting cancer growth. The application of nutritional methionine restriction and methioninase in combination with chemotherapeutic regimens is the current focus of clinical studies.


      To read this article in full you will need to make a payment
      ESMO Member Login
      Login with your ESMO username and password.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Stratton M.R.
        • Campbell P.J.
        • Futreal P.A.
        The cancer genome.
        Nature. 2009; 458: 719-724
      1. World Cancer Research Fund/American Institute for Cancer Research. Food, nutrition, physical activity and the prevention of cancer: a global perspective, 2007. Available from:

        • Cellarier E.
        • Durando X.
        • Vasson M.P.
        • et al.
        Methionine dependency and cancer treatment.
        Cancer Treat Rev. 2003; 29: 489-499
        • Zimmerman J.A.
        • Malloy V.
        • Krajcik R.
        • Orentreich N.
        Nutritional control of aging.
        Exp Gerontol. 2003; 38: 47-52
        • Finkelstein J.D.
        Methionine metabolism in mammals.
        J Nutr Biochem. 1990; 1: 228-237
        • Bolander-Gouaille C.
        • Bottiglieri T.
        Homocysteine: related vitamins and neuropsychiatric disorders.
        2nd ed. Springer-Verlag, Paris2007
        • Zingg J.M.
        • Jones P.A.
        Genetic and epigenetic aspects of DNA methylation on genome expression, evolution, mutation and carcinogenesis.
        Carcinogenesis. 1997; 18: 869-882
        • Sunden S.L.
        • Renduchintala M.S.
        • Park E.I.
        • Miklasz S.D.
        • Garrow T.A.
        Betaine–homocysteine methyltransferase expression in porcine and human tissues and chromosomal localization of the human gene.
        Arch Biochem Biophys. 1997; 345: 171-174
        • Anderson M.E.
        Glutathione: an overview of biosynthesis and modulation.
        Chem Biol Interact. 1998; 111–112: 1-14
        • Thomas T.
        • Thomas T.J.
        Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications.
        Cell Mol Life Sci. 2001; 58: 244-258
        • Pirkov I.
        • Norbeck J.
        • Gustafsson L.
        • Albers E.
        A complete inventory of all enzymes in the eukaryotic methionine salvage pathway.
        FEBS J. 2008; 275: 4111-4120
        • Quash G.
        • Roch A.M.
        • Chantepie J.
        • et al.
        Methional derived from 4-methylthio-2-oxobutanoate is a cellular mediator of apoptosis in BAF3 lymphoid cells.
        Biochem J. 1995; 305: 1017-1025
        • Sugimura T.
        • Birnbaum S.M.
        • Winitz M.
        • Greenstein J.P.
        Quantitative nutritional studies with water-soluble, chemically defined diets: VIII. The forced feeding of diets each lacking in one essential amino acid.
        Arch Biochem Biophys. 1959; 81: 448-455
        • Buch L.
        • Streeter D.
        • Halpern R.M.
        • et al.
        Inhibition of transfer ribonucleic acid methylase activity from several human tumors by nicotinamide and nicotinamide analogs.
        Biochemistry. 1972; 11: 393-397
        • Halpern B.C.
        • Clark B.R.
        • Hardy D.N.
        • Halpern R.M.
        • Smith R.A.
        The effect of replacement of methionine by homocystine on survival of malignant and normal adult mammalian cells in culture.
        Proc Natl Acad Sci USA. 1974; 71: 1133-1136
        • Breillout F.
        • Antoine E.
        • Poupon M.F.
        Methionine dependency of malignant tumors: a possible approach for therapy.
        J Natl Cancer Inst. 1990; 82: 1628-1632
        • Hoffman R.M.
        Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis. A review and synthesis.
        Biochim Biophys Acta. 1984; 738: 49-87
        • Lu S.
        • Epner D.E.
        Molecular mechanisms of cell cycle block by methionine restriction in human prostate cancer cells.
        Nutr Cancer. 2000; 38: 123-130
        • Poirson-Bichat F.
        • Goncalves R.A.
        • Miccoli L.
        • Dutrillaux B.
        • Poupon M.F.
        Methionine depletion enhances the antitumoral efficacy of cytotoxic agents in drug-resistant human tumor xenografts.
        Clin Cancer Res. 2000; 6: 643-653
        • Guo H.Y.
        • Herrera H.
        • Groce A.
        • Hoffman R.M.
        Expression of the biochemical defect of methionine dependence in fresh patient tumors in primary histoculture.
        Cancer Res. 1993; 53: 2479-2483
        • Hoffman R.M.
        • Erbe R.W.
        High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine.
        Proc Natl Acad Sci USA. 1976; 73: 1523-1527
        • Hoffman R.M.
        • Jacobsen S.J.
        • Erbe R.W.
        Reversion to methionine independence by malignant rat and SV40-transformed human fibroblasts.
        Biochem Biophys Res Commun. 1978; 82: 228-234
        • Hoffman R.M.
        • Jacobsen S.J.
        • Erbe R.W.
        Reversion to methionine independence in simian virus 40-transformed human and malignant rat fibroblasts is associated with altered ploidy and altered properties of transformation.
        Proc Natl Acad Sci USA. 1979; 76: 1313-1317
        • Coalson D.W.
        • Mecham J.O.
        • Stern P.H.
        • Hoffman R.M.
        Reduced availability of endogenously synthesized methionine for S-adenosylmethionine formation in methionine-dependent cancer cells.
        Proc Natl Acad Sci USA. 1982; 79: 4248-4251
        • Stern P.H.
        • Mecham J.O.
        • Wallace C.D.
        • Hoffman R.M.
        Reduced free-methionine in methionine-dependent SV40-transformed human fibroblasts synthesizing apparently normal amounts of methionine.
        J Cell Physiol. 1983; 117: 9-14
        • Behrmann I.
        • Wallner S.
        • Komyod W.
        • et al.
        Characterization of methylthioadenosine phosphorylase (MTAP) expression in malignant melanoma.
        Am J Pathol. 2003; 163: 683-690
        • Garcia-Castellano J.M.
        • Villanueva A.
        • Healey J.H.
        • et al.
        Methylthioadenosine phosphorylase gene deletions are common in osteosarcoma.
        Clin Cancer Res. 2002; 8: 782-787
        • Komatsu A.
        • Nagasaki K.
        • Fujimori M.
        • Amano J.
        • Miki Y.
        Identification of novel deletion polymorphisms in breast cancer.
        Int J Oncol. 2008; 33: 261-270
        • M’Soka T.J.
        • Nishioka J.
        • Taga A.
        • et al.
        Detection of methylthioadenosine phosphorylase (MTAP) and p16 gene deletion in T cell acute lymphoblastic leukemia by real-time quantitative PCR assay.
        Leukemia. 2000; 14: 935-940
        • Nobori T.
        • Karras J.G.
        • Della Ragione F.
        • et al.
        Absence of methylthioadenosine phosphorylase in human gliomas.
        Cancer Res. 1991; 51: 3193-3197
        • Schmid M.
        • Malicki D.
        • Nobori T.
        • et al.
        Homozygous deletions of methylthioadenosine phosphorylase (MTAP) are more frequent than p16INK4A (CDKN2) homozygous deletions in primary non-small cell lung cancers (NSCLC).
        Oncogene. 1998; 17: 2669-2675
        • Nobori T.
        • Miura K.
        • Wu D.J.
        • et al.
        Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers.
        Nature. 1994; 368: 753-756
        • Nobori T.
        • Takabayashi K.
        • Tran P.
        • et al.
        Genomic cloning of methylthioadenosine phosphorylase: a purine metabolic enzyme deficient in multiple different cancers.
        Proc Natl Acad Sci USA. 1996; 93: 6203-6208
        • Brat D.J.
        • James C.D.
        • Jedlicka A.E.
        • et al.
        Molecular genetic alterations in radiation-induced astrocytomas.
        Am J Pathol. 1999; 154: 1431-1438
        • Christopher S.A.
        • Diegelman P.
        • Porter C.W.
        • Kruger W.D.
        Methylthioadenosine phosphorylase, a gene frequently codeleted with p16(cdkN2a/ARF), acts as a tumor suppressor in a breast cancer cell line.
        Cancer Res. 2002; 62: 6639-6644
        • Tang B.
        • Li Y.N.
        • Kruger W.D.
        Defects in methylthioadenosine phosphorylase are associated with but not responsible for methionine-dependent tumor cell growth.
        Cancer Res. 2000; 60: 5543-5547
        • Lubin M.
        • Lubin A.
        Selective killing of tumors deficient in methylthioadenosine phosphorylase: a novel strategy.
        PLoS One. 2009; 4: e5735
        • Kindler H.L.
        • Burris 3rd, H.A.
        • Sandler A.B.
        • Oliff I.A.
        A phase II multicenter study of l-alanosine, a potent inhibitor of adenine biosynthesis, in patients with MTAP-deficient cancer.
        Invest New Drugs. 2009; 27: 75-81
        • Basu I.
        • Locker J.
        • Cassera M.B.
        • et al.
        Growth and metastases of human lung cancer are inhibited in mouse xenografts by a transition state analogue of 5′-methylthioadenosine phosphorylase.
        J Biol Chem. 2010; 286: 4902-4911
        • Subhi A.L.
        • Diegelman P.
        • Porter C.W.
        • et al.
        Methylthioadenosine phosphorylase regulates ornithine decarboxylase by production of downstream metabolites.
        J Biol Chem. 2003; 278: 49868-49873
        • Kenyon S.H.
        • Waterfield C.J.
        • Timbrell J.A.
        • Nicolaou A.
        Methionine synthase activity and sulphur amino acid levels in the rat liver tumour cells HTC and Phi-1.
        Biochem Pharmacol. 2002; 63: 381-391
        • Stern P.H.
        • Wallace C.D.
        • Hoffman R.M.
        Altered methionine metabolism occurs in all members of a set of diverse human tumor cell lines.
        J Cell Physiol. 1984; 119: 29-34
        • Drennan C.L.
        • Huang S.
        • Drummond J.T.
        • Matthews R.G.
        • Lidwig M.L.
        How a protein binds B12: a 3.0 A X-ray structure of B12-binding domains of methionine synthase.
        Science. 1994; 266: 1669-1674
        • Beetstra S.
        • Suthers G.
        • Dhillon V.
        • et al.
        Methionine-dependence phenotype in the de novo pathway in BRCA1 and BRCA2 mutation carriers with and without breast cancer.
        Cancer Epidemiol Biomarkers Prev. 2008; 17: 2565-2571
        • Tisdale M.J.
        Methionine metabolism in Walker carcinosarcoma in vitro.
        Eur J Cancer. 1980; 16: 407-414
        • Kimura M.
        • Umegaki K.
        • Higuchi M.
        • Thomas P.
        • Fenech M.
        Methylenetetrahydrofolate reductase C677T polymorphism, folic acid and riboflavin are important determinants of genome stability in cultured human lymphocytes.
        J Nutr. 2004; 134: 48-56
        • McNulty H.
        • Dowey le R.C.
        • Strain J.J.
        • et al.
        Riboflavin lowers homocysteine in individuals homozygous for the MTHFR 677C → T polymorphism.
        Circulation. 2006; 113: 74-80
        • Fiskerstrand T.
        • Christensen B.
        • Tysnes O.B.
        • Ueland P.M.
        • Refsum H.
        Development and reversion of methionine dependence in a human glioma cell line: relation to homocysteine remethylation and cobalamin status.
        Cancer Res. 1994; 54: 4899-4906
        • Liteplo R.G.
        • Hipwell S.E.
        • Rosenblatt D.S.
        • Sillaots S.
        • Lue-Shing H.
        Changes in cobalamin metabolism are associated with the altered methionine auxotrophy of highly growth autonomous human melanoma cells.
        J Cell Physiol. 1991; 149: 332-338
        • Loewy A.D.
        • Niles K.M.
        • Anastasio N.
        • et al.
        Epigenetic modification of the gene for the vitamin B(12) chaperone MMACHC can result in increased tumorigenicity and methionine dependence.
        Mol Genet Metab. 2009; 96: 261-267
        • Watkins D.
        Cobalamin metabolism in methionine-dependent human tumour and leukemia cell lines.
        Clin Invest Med. 1998; 21: 151-158
        • Ma E.
        • Iwasaki M.
        • Junko I.
        • et al.
        Dietary intake of folate, vitamin B6, and vitamin B12, genetic polymorphism of related enzymes, and risk of breast cancer: a case-control study in Brazilian women.
        BMC Cancer. 2009; 9: 122
        • Lu M.
        • Wang F.
        • Qiu J.
        Methionine synthase A2756G polymorphism and breast cancer risk: a meta-analysis involving 18,953 subjects.
        Breast Cancer Res Treat. 2010; 123: 213-217
        • Sharp L.
        • Little J.
        Polymorphisms in genes involved in folate metabolism and colorectal neoplasia: a HuGE review.
        Am J Epidemiol. 2004; 159: 423-443
        • Linnebank M.
        • Fliessbach K.
        • Kolsch H.
        • Rietschel M.
        • Wullner U.
        The methionine synthase polymorphism c.2756A right curved arrow G (D919G) is relevant for disease-free longevity.
        Int J Mol Med. 2005; 16: 759-761
        • Dhillon V.
        • Thomas P.
        • Fenech M.
        Effect of common polymorphisms in folate uptake and metabolism genes on frequency of micronucleated lymphocytes in a South Australian cohort.
        Mutat Res. 2009; 665: 1-6
        • Bergstrom M.
        • Ericson K.
        • Hagenfeldt L.
        • et al.
        PET study of methionine accumulation in glioma and normal brain tissue: competition with branched chain amino acids.
        J Comput Assist Tomogr. 1987; 11: 208-213
        • Stern P.H.
        • Hoffman R.M.
        Elevated overall rates of transmethylation in cell lines from diverse human tumors.
        In Vitro. 1984; 20: 663-670
        • Judde J.G.
        • Ellis M.
        • Frost P.
        Biochemical analysis of the role of transmethylation in the methionine dependence of tumor cells.
        Cancer Res. 1989; 49: 4859-4865
        • Hoshiya Y.
        • Guo H.
        • Kubota T.
        • et al.
        Human tumors are methionine dependent in vivo.
        Anticancer Res. 1995; 15: 717-718
        • Tang B.
        • Mustafa A.
        • Gupta S.
        • et al.
        Methionine-deficient diet induces post-transcriptional downregulation of cystathionine beta-synthase.
        Nutrition. 2009; 26: 1170-1175
        • Epner D.E.
        • Morrow S.
        • Wilcox M.
        • Houghton J.L.
        Nutrient intake and nutritional indexes in adults with metastatic cancer on a phase I clinical trial of dietary methionine restriction.
        Nutr Cancer. 2002; 42: 158-166
        • Breillout F.
        • Hadida F.
        • Echinard-Garin P.
        • Lascaux V.
        • Poupon M.F.
        Decreased rat rhabdomyosarcoma pulmonary metastases in response to a low methionine diet.
        Anticancer Res. 1987; 7: 861-867
        • Guo H.
        • Lishko V.K.
        • Herrera H.
        • et al.
        Therapeutic tumor-specific cell cycle block induced by methionine starvation in vivo.
        Cancer Res. 1993; 53: 5676-5679
        • Komninou D.
        • Leutzinger Y.
        • Reddy B.S.
        • Richie Jr., J.P.
        Methionine restriction inhibits colon carcinogenesis.
        Nutr Cancer. 2006; 54: 202-208
        • Theuer R.C.
        Effect of essential amino acid restriction on the growth of female C57BL mice and their implanted BW10232 adenocarcinomas.
        J Nutr. 1971; 101: 223-232
        • McCarty M.F.
        • Barroso-Aranda J.
        • Contreras F.
        The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy.
        Med Hypotheses. 2009; 72: 125-128
        • Davey G.K.
        • Spencer E.A.
        • Appleby P.N.
        • et al.
        EPIC-Oxford: lifestyle characteristics and nutrient intakes in a cohort of 33883 meat-eaters and 31546 non meat-eaters in the UK.
        Public Health Nutr. 2003; 6: 259-269
        • Ornish D.
        • Weidner G.
        • Fair W.R.
        • et al.
        Intensive lifestyle changes may affect the progression of prostate cancer.
        J Urol. 2005; 174 (discussion 9–70): 1065-1069
        • Caro P.
        • Gomez J.
        • Sanchez I.
        • et al.
        Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria.
        Rejuvenation Res. 2009; 12: 421-434
        • Li Y.
        • Liu L.
        • Tollefsbol T.O.
        Glucose restriction can extend normal cell lifespan and impair precancerous cell growth through epigenetic control of hTERT and p16 expression.
        FASEB J. 2010; 24: 1442-1453
        • Fenech M.F.
        Nutriomes and nutrient arrays – the key to personalised nutrition for DNA damage prevention and cancer growth control.
        Genome Integr. 2010; 1: 11
        • Orentreich N.
        • Matias J.R.
        • DeFelice A.
        • Zimmerman J.A.
        Low methionine ingestion by rats extends life span.
        J Nutr. 1993; 123: 269-274
        • Richie Jr., J.P.
        • Leutzinger Y.
        • Parthasarathy S.
        • et al.
        Methionine restriction increases blood glutathione and longevity in F344 rats.
        FASEB J. 1994; 8: 1302-1307
        • Miller R.A.
        • Buehner G.
        • Chang Y.
        • et al.
        Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance.
        Aging Cell. 2005; 4: 119-125
        • Kreis W.
        • Hession C.
        Isolation and purification of l-methionine-alpha-deamino-gamma-mercaptomethane-lyase (l-methioninase) from Clostridium sporogenes.
        Cancer Res. 1973; 33: 1862-1865
        • Kreis W.
        • Hession C.
        Biological effects of enzymatic deprivation of l-methionine in cell culture and an experimental tumor.
        Cancer Res. 1973; 33: 1866-1869
        • Esaki N.
        • Soda K.
        l-Methionine gamma-lyase from Pseudomonas putida and Aeromonas.
        Methods Enzymol. 1987; 143: 459-465
        • Tan Y.
        • Xu M.
        • Guo H.
        • et al.
        Anticancer efficacy of methioninase in vivo.
        Anticancer Res. 1996; 16: 3931-3936
        • Tan Y.
        • Xu M.
        • Tan X.
        • et al.
        Overexpression and large-scale production of recombinant l-methionine-alpha-deamino-gamma-mercaptomethane-lyase for novel anticancer therapy.
        Protein Expr Purif. 1997; 9: 233-245
        • Sun X.
        • Yang Z.
        • Li S.
        • et al.
        In vivo efficacy of recombinant methioninase is enhanced by the combination of polyethylene glycol conjugation and pyridoxal 5′-phosphate supplementation.
        Cancer Res. 2003; 63: 8377-8383
        • Yang Z.
        • Wang J.
        • Yoshioka T.
        • et al.
        Pharmacokinetics, methionine depletion, and antigenicity of recombinant methioninase in primates.
        Clin Cancer Res. 2004; 10: 2131-2138
        • Tan Y.
        • Xu M.
        • Hoffman R.M.
        Broad selective efficacy of recombinant methioninase and polyethylene glycol-modified recombinant methioninase on cancer cells in vitro.
        Anticancer Res. 2010; 30: 1041-1046
        • Hoffman R.M.
        • Jacobsen S.J.
        Reversible growth arrest in simian virus 40-transformed human fibroblasts.
        Proc Natl Acad Sci USA. 1980; 77: 7306-7310
        • Stern P.H.
        • Hoffman R.M.
        Enhanced in vitro selective toxicity of chemotherapeutic agents for human cancer cells based on a metabolic defect.
        J Natl Cancer Inst. 1986; 76: 629-639
        • Machover D.
        • Zittoun J.
        • Broet P.
        • et al.
        Cytotoxic synergism of methioninase in combination with 5-fluorouracil and folinic acid.
        Biochem Pharmacol. 2001; 61: 867-876
        • Goseki N.
        • Endo M.
        Thiol depletion and chemosensitization on nimustine hydrochloride by methionine-depleting total parenteral nutrition.
        Tohoku J Exp Med. 1990; 161: 227-239
        • Goseki N.
        • Yamazaki S.
        • Shimojyu K.
        • et al.
        Synergistic effect of methionine-depleting total parenteral nutrition with 5-fluorouracil on human gastric cancer: a randomized, prospective clinical trial.
        Jpn J Cancer Res. 1995; 86: 484-489
        • Durando X.
        • Thivat E.
        • Farges M.C.
        • et al.
        Optimal methionine-free diet duration for nitrourea treatment: a phase I clinical trial.
        Nutr Cancer. 2008; 60: 23-30
        • Durando X.
        • Farges M.C.
        • Buc E.
        • et al.
        Dietary methionine restriction with FOLFOX regimen as first line therapy of metastatic colorectal cancer: a feasibility study.
        Oncology. 2010; 78: 205-209
        • Goldberg R.M.
        Advances in the treatment of metastatic colorectal cancer.
        Oncologist. 2005; 10: 40-48
        • Jagasia A.A.
        • Block J.A.
        • Qureshi A.
        • et al.
        Chromosome 9 related aberrations and deletions of the CDKN2 and MTS2 putative tumor suppressor genes in human chondrosarcomas.
        Cancer Lett. 1996; 105: 91-103
        • Jagasia A.A.
        • Block J.A.
        • Diaz M.O.
        • et al.
        Partial deletions of the CDKN2 and MTS2 putative tumor suppressor genes in a myxoid chondrosarcoma.
        Cancer Lett. 1996; 105: 77-90
        • Powell E.L.
        • Leoni L.M.
        • Canto M.I.
        • et al.
        Concordant loss of MTAP and p16/CDKN2A expression in gastroesophageal carcinogenesis: evidence of homozygous deletion in esophageal noninvasive precursor lesions and therapeutic implications.
        Am J Surg Pathol. 2005; 29: 1497-1504
        • Kim D.H.
        • Muto M.
        • Kuwahara Y.
        • et al.
        Array-based comparative genomic hybridization of circulating esophageal tumor cells.
        Oncol Rep. 2006; 16: 1053-1059
        • Kim J.
        • Kim M.A.
        • Min S.Y.
        • et al.
        Downregulation of methylthioadenosine phosphorylase by homozygous deletion in gastric carcinoma.
        Genes Chromosomes Cancer. 2011; 50: 421-433
        • Huang H.Y.
        • Li S.H.
        • Yu S.C.
        • et al.
        Homozygous deletion of MTAP gene as a poor prognosticator in gastrointestinal stromal tumors.
        Clin Cancer Res. 2009; 15: 6963-6972
        • Suzuki T.
        • Maruno M.
        • Wada K.
        • et al.
        Genetic analysis of human glioblastomas using a genomic microarray system.
        Brain Tumor Pathol. 2004; 21: 27-34
        • Zhang H.
        • Chen Z.H.
        • Savarese T.M.
        Codeletion of the genes for p16INK4, methylthioadenosine phosphorylase, interferon-alpha1, interferon-beta1, and other 9p21 markers in human malignant cell lines.
        Cancer Genet Cytogenet. 1996; 86: 22-28
        • Perry A.
        • Nobori T.
        • Ru N.
        • et al.
        Detection of p16 gene deletions in gliomas: a comparison of fluorescence in situ hybridization (FISH) versus quantitative PCR.
        J Neuropathol Exp Neurol. 1997; 56: 999-1008
        • Olopade O.I.
        • Jenkins R.B.
        • Ransom D.T.
        • et al.
        Molecular analysis of deletions of the short arm of chromosome 9 in human gliomas.
        Cancer Res. 1992; 52: 2523-2529
        • Efferth T.
        • Miyachi H.
        • Drexler H.G.
        • Gebhart E.
        Methylthioadenosine phosphorylase as target for chemoselective treatment of T-cell acute lymphoblastic leukemic cells.
        Blood Cells Mol Dis. 2002; 28: 47-56
        • Bertin R.
        • Acquaviva C.
        • Mirebeau D.
        • et al.
        CDKN2A, CDKN2B, and MTAP gene dosage permits precise characterization of mono- and bi-allelic 9p21 deletions in childhood acute lymphoblastic leukemia.
        Genes Chromosomes Cancer. 2003; 37: 44-57
        • Kamath A.
        • Tara H.
        • Xiang B.
        • et al.
        Double-minute MYC amplification and deletion of MTAP, CDKN2A, CDKN2B, and ELAVL2 in an acute myeloid leukemia characterized by oligonucleotide-array comparative genomic hybridization.
        Cancer Genet Cytogenet. 2008; 183: 117-120
        • Usvasalo A.
        • Ninomiya S.
        • Raty R.
        • et al.
        Focal 9p instability in hematologic neoplasias revealed by comparative genomic hybridization and single-nucleotide polymorphism microarray analyses.
        Genes Chromosomes Cancer. 2010; 49: 309-318
        • Hori Y.
        • Hori H.
        • Yamada Y.
        • et al.
        The methylthioadenosine phosphorylase gene is frequently co-deleted with the p16INK4a gene in acute type adult T-cell leukemia.
        Int J Cancer. 1998; 75: 51-56
        • Mirebeau D.
        • Acquaviva C.
        • Suciu S.
        • et al.
        The prognostic significance of CDKN2A, CDKN2B and MTAP inactivation in B-lineage acute lymphoblastic leukemia of childhood. Results of the EORTC studies 58881 and 58951.
        Haematologica. 2006; 91: 881-885
        • Marce S.
        • Balague O.
        • Colomo L.
        • et al.
        Lack of methylthioadenosine phosphorylase expression in mantle cell lymphoma is associated with shorter survival: implications for a potential targeted therapy.
        Clin Cancer Res. 2006; 12: 3754-3761
        • Dreyling M.H.
        • Roulston D.
        • Bohlander S.K.
        • Vardiman J.
        • Olopade O.I.
        Codeletion of CDKN2 and MTAP genes in a subset of non-Hodgkin’s lymphoma may be associated with histologic transformation from low-grade to diffuse large-cell lymphoma.
        Genes Chromosomes Cancer. 1998; 22: 72-78
        • Krasinskas A.M.
        • Bartlett D.L.
        • Cieply K.
        • Dacic S.
        CDKN2A and MTAP deletions in peritoneal mesotheliomas are correlated with loss of p16 protein expression and poor survival.
        Mod Pathol. 2010; 23: 531-538
        • Illei P.B.
        • Rusch V.W.
        • Zakowski M.F.
        • Ladanyi M.
        Homozygous deletion of CDKN2A and codeletion of the methylthioadenosine phosphorylase gene in the majority of pleural mesotheliomas.
        Clin Cancer Res. 2003; 9: 2108-2113
        • Mora J.
        • Alaminos M.
        • de Torres C.
        • et al.
        Comprehensive analysis of the 9p21 region in neuroblastoma suggests a role for genes mapping to 9p21–23 in the biology of favourable stage 4 tumours.
        Br J Cancer. 2004; 91: 1112-1118
        • Brownhill S.C.
        • Taylor C.
        • Burchill S.A.
        Chromosome 9p21 gene copy number and prognostic significance of p16 in ESFT.
        Br J Cancer. 2007; 96: 1914-1923
        • Hustinx S.R.
        • Hruban R.H.
        • Leoni L.M.
        • et al.
        Homozygous deletion of the MTAP gene in invasive adenocarcinoma of the pancreas and in periampullary cancer: a potential new target for therapy.
        Cancer Biol Ther. 2005; 4: 83-86
        • Hustinx S.R.
        • Leoni L.M.
        • Yeo C.J.
        • et al.
        Concordant loss of MTAP and p16/CDKN2A expression in pancreatic intraepithelial neoplasia: evidence of homozygous deletion in a noninvasive precursor lesion.
        Mod Pathol. 2005; 18: 959-963
        • Chen Z.H.
        • Zhang H.
        • Savarese T.M.
        Gene deletion chemoselectivity: codeletion of the genes for p16(INK4), methylthioadenosine phosphorylase, and the alpha- and beta-interferons in human pancreatic cell carcinoma lines and its implications for chemotherapy.
        Cancer Res. 1996; 56: 1083-1090
        • Wang X.
        • Li W.
        • Zheng J.
        • et al.
        Tumor suppressor gene alterations of spontaneously malignant transformed cells from human embryonic muscle in vitro.
        Oncol Rep. 2010; 24: 555-561
        • Worsham M.J.
        • Chen K.M.
        • Tiwari N.
        • et al.
        Fine-mapping loss of gene architecture at the CDKN2B (p15INK4b), CDKN2A (p14ARF, p16INK4a), and MTAP genes in head and neck squamous cell carcinoma.
        Arch Otolaryngol Head Neck Surg. 2006; 132: 409-415
        • Conway C.
        • Beswick S.
        • Elliott F.
        • et al.
        Deletion at chromosome arm 9p in relation to BRAF/NRAS mutations and prognostic significance for primary melanoma.
        Genes Chromosomes Cancer. 2010; 49: 425-438