Advertisement

Epithelial–mesenchymal transition and breast cancer: Role, molecular mechanisms and clinical impact

  • Chiara Foroni
    Affiliations
    U.O. Multidisciplinare di Patologia Mammaria, Laboratorio di Oncologia Molecolare Senologica, Istituti Ospitalieri di Cremona,Viale Concordia 1, 26100 Cremona, Italy
    Search for articles by this author
  • Massimo Broggini
    Affiliations
    Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
    Search for articles by this author
  • Daniele Generali
    Affiliations
    U.O. Multidisciplinare di Patologia Mammaria, Laboratorio di Oncologia Molecolare Senologica, Istituti Ospitalieri di Cremona,Viale Concordia 1, 26100 Cremona, Italy
    Search for articles by this author
  • Giovanna Damia
    Correspondence
    Corresponding author. Address: DNA Repair Unit, Laboratory of Molecular Pharmacology Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy. Tel.: +39 02 39014234; fax: +39 02 39014734, +39 02 3546277.
    Affiliations
    Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
    Search for articles by this author
Published:November 28, 2011DOI:https://doi.org/10.1016/j.ctrv.2011.11.001

      Abstract

      Epithelial–mesenchymal transition (EMT) is defined by the loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. In this process, cells acquire molecular alterations that facilitate dysfunctional cell–cell adhesive interactions and junctions. These processes may promote cancer cell progression and invasion into the surrounding microenvironment. Such transformation has implications in progression of breast carcinoma to metastasis, and increasing evidences support most tumors contain a subpopulation of cells with stem-like and mesenchymal features that is resistant to chemotherapy. This review focuses on the physiological and pathological role of EMT process, its molecular related network, its putative role in the metastatic process and its implications in response/resistance to the current and/or new approaching drugs in the clinical management of breast cancer.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cancer Treatment Reviews
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abraham B.K.
        • Fritz P.
        • McClellan M.
        • Hauptvogel P.
        • Athelogou M.
        • Brauch H.
        Prevalence of CD44+/CD24−/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis.
        Clin Cancer Res. 2005; 11: 1154-1159
        • Acloque H.
        • Adams M.S.
        • Fishwick K.
        • Bronner-Fraser M.
        • Nieto M.A.
        Epithelial–mesenchymal transitions: the importance of changing cell state in development and disease.
        J Clin Invest. 2009; 119: 1438-1449
        • Aktas B.
        • Tewes M.
        • Fehm T.
        • Hauch S.
        • Kimmig R.
        • Kasimir-Bauer S.
        Stem cell and epithelial–mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients.
        Breast Cancer Res. 2009; 11: R46
        • Al-Ejeh F.
        • Smart C.E.
        • Morrison B.J.
        • Chenevix-Trench G.
        • Lopez J.A.
        • Lakhani S.R.
        • et al.
        Breast cancer stem cells: treatment resistance and therapeutic opportunities.
        Carcinogenesis. 2011; 32: 650-658
        • Al-Hajj M.
        • Wicha M.S.
        • Benito-Hernandez A.
        • Morrison S.J.
        • Clarke M.F.
        Prospective identification of tumorigenic breast cancer cells.
        Proc Natl Acad Sci USA. 2003; 100: 3983-3988
        • Arima Y.
        • Inoue Y.
        • Shibata T.
        • Hayashi H.
        • Nagano O.
        • Saya H.
        • et al.
        Rb depletion results in deregulation of E-cadherin and induction of cellular phenotypic changes that are characteristic of the epithelial-to-mesenchymal transition.
        Cancer Res. 2008; 68: 5104-5112
        • Baffa R.
        • Fassan M.
        • Volinia S.
        • O’Hara B.
        • Liu C.G.
        • Palazzo J.P.
        • et al.
        MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets.
        J Pathol. 2009; 219: 214-221
        • Bailey J.M.
        • Singh P.K.
        • Hollingsworth M.A.
        Cancer metastasis facilitated by developmental pathways: sonic hedgehog, notch, and bone morphogenic proteins.
        J Cell Biochem. 2007; 102: 829-839
        • Baum B.
        • Settleman J.
        • Quinlan M.P.
        Transitions between epithelial and mesenchymal states in development and disease.
        Semin Cell Dev Biol. 2008; 19: 294-308
        • Blanco M.J.
        • Moreno-Bueno G.
        • Sarrio D.
        • Locascio A.
        • Cano A.
        • Palacios J.
        • et al.
        Correlation of Snail expression with histological grade and lymph node status in breast carcinomas.
        Oncogene. 2002; 21: 3241-3246
        • Blick T.
        • Hugo H.
        • Widodo E.
        • Waltham M.
        • Pinto C.
        • Mani S.A.
        • et al.
        Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer.
        J Mammary Gland Biol Neoplasia. 2010; 15: 235-252
        • Brabletz S.
        • Bajdak K.
        • Meidhof S.
        • Burk U.
        • Niedermann G.
        • Firat E.
        • et al.
        The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells.
        EMBO J. 2011; 30: 770-782
        • Buijs J.
        • Henriquez N.
        • van Overveld P.
        • van der Horst G.
        • ten Dijke P.
        • van der Pluijm G.
        TGF-β and BMP7 interactions in tumour progression and bone metastasis.
        Clin Experiment Metastasis. 2007; 24: 609-617
        • Buijs J.T.
        • Petersen M.
        • van der Horst G.
        • van der Pluijm G.
        Bone morphogenetic proteins and its receptors; therapeutic targets in cancer progression and bone metastasis?.
        Curr Pharm Des. 2010; 16: 1291-1300
        • Burk U.
        • Schubert J.
        • Wellner U.
        • Schmalhofer O.
        • Vincan E.
        • Spaderna S.
        • et al.
        A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells.
        EMBO Rep. 2008; 9: 582-589
        • Castilla M.Á.
        • Moreno-Bueno G.
        • Romero-Pérez L.
        • De Vijver K.V.
        • Biscuola M.
        • López-García M.Á.
        • et al.
        Micro-RNA signature of the epithelial–mesenchymal transition in endometrial carcinosarcoma.
        J Pathol. 2011; 223: 72-80
        • Chaffer C.L.
        • Weinberg R.A.
        A perspective on cancer cell metastasis.
        Science. 2011; 331: 1559-1564
        • Cheng G.Z.
        • Chan J.
        • Wang Q.
        • Zhang W.
        • Sun C.D.
        • Wang L.-H.
        Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel.
        Cancer Res. 2007; 67: 1979-1987
        • Chung J.H.
        • Rho J.K.
        • Xu X.
        • Lee J.S.
        • Yoon H.I.
        • Lee C.T.
        • et al.
        Clinical and molecular evidences of epithelial to mesenchymal transition in acquired resistance to EGFR-TKIs.
        Lung Cancer. 2010; 73: 176-182
        • Cochrane D.R.
        • Spoelstra N.S.
        • Howe E.N.
        • Nordeen S.K.
        • Richer J.K.
        MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents.
        Mol Cancer Ther. 2009; 8: 1055-1066
        • Come C.
        • Magnino F.
        • Bibeau F.
        • De Santa Barbara P.
        • Becker K.F.
        • Theillet C.
        • et al.
        Snail and slug play distinct roles during breast carcinoma progression.
        Clin Cancer Res. 2006; 12: 5395-5402
        • Corcoran K.E.
        • Trzaska K.A.
        • Fernandes H.
        • Bryan M.
        • Taborga M.
        • Srinivas V.
        • et al.
        Mesenchymal stem cells in early entry of breast cancer into bone marrow.
        PLoS One. 2008; 3: e2563
        • Creighton C.J.
        • Chang J.C.
        • Rosen J.M.
        Epithelial–mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer.
        J Mammary Gland Biol Neoplasia. 2010; 15: 253-260
        • Creighton C.J.
        • Li X.
        • Landis M.
        • Dixon J.M.
        • Neumeister V.M.
        • Sjolund A.
        • et al.
        Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features.
        Proc Natl Acad Sci USA. 2009; 106: 13820-13825
        • Cripe T.P.
        • Wang P.Y.
        • Marcato P.
        • Mahller Y.Y.
        • Lee P.W.
        Targeting cancer-initiating cells with oncolytic viruses.
        Mol Ther. 2009; 17: 1677-1682
        • Cristofanilli M.
        • Budd G.T.
        • Ellis M.J.
        • Stopeck A.
        • Matera J.
        • Miller M.C.
        • et al.
        Circulating tumor cells, disease progression, and survival in metastatic breast cancer.
        N Engl J Med. 2004; 351: 781-791
        • Cufi S.
        • Vazquez-Martin A.
        • Oliveras-Ferraros C.
        • Martin-Castillo B.
        • Joven J.
        • Menendez J.A.
        Metformin against TGFbeta-induced epithelial-to-mesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis.
        Cell Cycle. 2010; 9: 4461-4468
        • Damonte P.
        • Gregg J.P.
        • Borowsky A.D.
        • Keister B.A.
        • Cardiff R.D.
        EMT tumorigenesis in the mouse mammary gland.
        Lab Invest. 2007; 87: 1218-1226
        • Dunn L.K.
        • Mohammad K.S.
        • Fournier P.G.
        • McKenna C.R.
        • Davis H.W.
        • Niewolna M.
        • et al.
        Hypoxia and TGF-beta drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment.
        PLoS One. 2009; 4: e6896
        • Fehm T.
        • Hoffmann O.
        • Aktas B.
        • Becker S.
        • Solomayer E.F.
        • Wallwiener D.
        • et al.
        Detection and characterization of circulating tumor cells in blood of primary breast cancer patients by RT-PCR and comparison to status of bone marrow disseminated cells.
        Breast Cancer Res. 2009; 11: R59
        • Fillmore C.M.
        • Kuperwasser C.
        Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy.
        Breast Cancer Res. 2008; 10: R25
        • Franci C.
        • Takkunen M.
        • Dave N.
        • Alameda F.
        • Gomez S.
        • Rodriguez R.
        • et al.
        Expression of Snail protein in tumor-stroma interface.
        Oncogene. 2006; 25: 5134-5144
        • Gal A.
        • Sjoblom T.
        • Fedorova L.
        • Imreh S.
        • Beug H.
        • Moustakas A.
        Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis.
        Oncogene. 2008; 27: 1218-1230
        • Gebeshuber C.A.
        • Zatloukal K.
        • Martinez J.
        MiR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis.
        EMBO Rep. 2009; 10: 400-405
        • Gee H.E.
        • Camps C.
        • Buffa F.M.
        • Colella S.
        • Sheldon H.
        • Gleadle J.M.
        • et al.
        MicroRNA-10b and breast cancer metastasis.
        Nature. 2008; 455 (author reply E9): E8-E9
        • Ginestier C.
        • Hur M.H.
        • Charafe-Jauffret E.
        • Monville F.
        • Dutcher J.
        • Brown M.
        • et al.
        ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome.
        Cell Stem Cell. 2007; 1: 555-567
        • Green S.K.
        • Francia G.
        • Isidoro C.
        • Kerbel R.S.
        Antiadhesive antibodies targeting E-cadherin sensitize multicellular tumor spheroids to chemotherapy in vitro.
        Mol Cancer Ther. 2004; 3: 149-159
        • Gregory P.A.
        • Bert A.G.
        • Paterson E.L.
        • Barry S.C.
        • Tsykin A.
        • Farshid G.
        • et al.
        The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1.
        Nat Cell Biol. 2008; 10: 593-601
        • Gupta P.B.
        • Onder T.T.
        • Jiang G.
        • Tao K.
        • Kuperwasser C.
        • Weinberg R.A.
        • et al.
        Identification of selective inhibitors of cancer stem cells by high-throughput screening.
        Cell. 2009; 138: 645-659
        • Hermann P.C.
        • Bhaskar S.
        • Cioffi M.
        • Heeschen C.
        Cancer stem cells in solid tumors.
        Semin Cancer Biol. 2010; 20: 77-84
        • Hiscox S.
        • Jiang W.G.
        • Obermeier K.
        • Taylor K.
        • Morgan L.
        • Burmi R.
        • et al.
        Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of β-catenin phosphorylation.
        Int J Cancer. 2006; 118: 290-301
        • Huber M.A.
        • Azoitei N.
        • Baumann B.
        • Grunert S.
        • Sommer A.
        • Pehamberger H.
        • et al.
        NF-kappaB is essential for epithelial–mesenchymal transition and metastasis in a model of breast cancer progression.
        J Clin Invest. 2004; 114: 569-581
        • Hui A.B.
        • Shi W.
        • Boutros P.C.
        • Miller N.
        • Pintilie M.
        • Fyles T.
        • et al.
        Robust global micro-RNA profiling with formalin-fixed paraffin-embedded breast cancer tissues.
        Lab Invest. 2009; 89: 597-606
        • Hulit J.
        • Suyama K.
        • Chung S.
        • Keren R.
        • Agiostratidou G.
        • Shan W.
        • et al.
        N-cadherin signaling potentiates mammary tumor metastasis via enhanced extracellular signal-regulated kinase activation.
        Cancer Res. 2007; 67: 3106-3116
        • Iseri O.D.
        • Kars M.D.
        • Arpaci F.
        • Atalay C.
        • Pak I.
        • Gunduz U.
        Drug resistant MCF-7 cells exhibit epithelial-mesenchymal transition gene expression pattern.
        Biomed Pharmacother. 2010; 65: 40-45
        • Iwatsuki M.
        • Mimori K.
        • Yokobori T.
        • Ishi H.
        • Beppu T.
        • Nakamori S.
        • et al.
        Epithelial–mesenchymal transition in cancer development and its clinical significance.
        Cancer Sci. 2010; 101: 293-299
        • Johansson K.A.
        • Grapin-Botton A.
        Development and diseases of the pancreas.
        Clin Genet. 2002; 62: 14-23
        • Josson S.
        • Nomura T.
        • Lin J.-T.
        • Huang W.-C.
        • Wu D.
        • Zhau H.E.
        • et al.
        β-Microglobulin induces epithelial to mesenchymal transition and confers cancer lethality and bone metastasis in human cancer cells.
        Cancer Res. 2011; 71: 2600-2610
        • Kajiyama H.
        • Shibata K.
        • Terauchi M.
        • Yamashita M.
        • Ino K.
        • Nawa A.
        • et al.
        Chemoresistance to paclitaxel induces epithelial–mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells.
        Int J Oncol. 2007; 31: 277-283
        • Kalluri R.
        • Weinberg R.A.
        The basics of epithelial–mesenchymal transition.
        J Clin Invest. 2009; 119: 1420-1428
        • Kim M.R.
        • Choi H.-K.
        • Cho K.B.
        • Kim H.S.
        • Kang K.W.
        Involvement of Pin1 induction in epithelial–mesenchymal transition of tamoxifen-resistant breast cancer cells.
        Cancer Science. 2009; 100: 1834-1841
        • Konecny G.E.
        • Venkatesan N.
        • Yang G.
        • Dering J.
        • Ginther C.
        • Finn R.
        • et al.
        Activity of lapatinib a novel HER2 and EGFR dual kinase inhibitor in human endometrial cancer cells.
        Br J Cancer. 2008; 98: 1076-1084
        • Korkaya H.
        • Paulson A.
        • Charafe-Jauffret E.
        • Ginestier C.
        • Brown M.
        • Dutcher J.
        • et al.
        Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling.
        PLoS Biol. 2009; 7: e1000121
        • Kumar A.
        • Xu J.
        • Brady S.
        • Gao H.
        • Yu D.
        • Reuben J.
        • et al.
        Tissue transglutaminase promotes drug resistance and invasion by inducing mesenchymal transition in mammary epithelial cells.
        PLoS One. 2010; 5: e13390
        • Lebret S.C.
        • Newgreen D.F.
        • Thompson E.W.
        • Ackland M.L.
        Induction of epithelial to mesenchymal transition in PMC42-LA human breast carcinoma cells by carcinoma-associated fibroblast secreted factors.
        Breast Cancer Res. 2007; 9: R19
        • Li Q.-Q.
        • Xu J.-D.
        • Wang W.-J.
        • Cao X.-X.
        • Chen Q.
        • Tang F.
        • et al.
        Twist1-mediated adriamycin-induced epithelial–mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells.
        Clin Cancer Res. 2009; 15: 2657-2665
        • Li X.
        • Lewis M.T.
        • Huang J.
        • Gutierrez C.
        • Osborne C.K.
        • Wu M.F.
        • et al.
        Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy.
        J Natl Cancer Inst. 2008; 100: 672-679
        • Li Y.
        • Kong D.
        • Wang Z.
        • Sarkar F.H.
        Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research.
        Pharm Res. 2010; 27: 1027-1041
        • Li Y.
        • Li W.
        • Yang Y.
        • Lu Y.
        • He C.
        • Hu G.
        • et al.
        MicroRNA-21 targets LRRFIP1 and contributes to VM-26 resistance in glioblastoma multiforme.
        Brain Res. 2009; 1286: 13-18
        • Liu R.
        • Wang X.
        • Chen G.Y.
        • Dalerba P.
        • Gurney A.
        • Hoey T.
        • et al.
        The prognostic role of a gene signature from tumorigenic breast-cancer cells.
        N Engl J Med. 2007; 356: 217-226
        • Lou H.
        • Dean M.
        Targeted therapy for cancer stem cells: the patched pathway and ABC transporters.
        Oncogene. 2007; 26: 1357-1360
        • Ma L.
        • Teruya-Feldstein J.
        • Weinberg R.A.
        Tumour invasion and metastasis initiated by microRNA-10b in breast cancer.
        Nature. 2007; 449: 682-688
        • Mani S.A.
        • Guo W.
        • Liao M.J.
        • Eaton E.N.
        • Ayyanan A.
        • Zhou A.Y.
        • et al.
        The epithelial–mesenchymal transition generates cells with properties of stem cells.
        Cell. 2008; 133: 704-715
        • Marcato P.
        • Dean C.A.
        • Giacomantonio C.A.
        • Lee P.W.
        Oncolytic reovirus effectively targets breast cancer stem cells.
        Mol Ther. 2009; 17: 972-979
        • Martello G.
        • Rosato A.
        • Ferrari F.
        • Manfrin A.
        • Cordenonsi M.
        • Dupont S.
        • et al.
        A MicroRNA targeting dicer for metastasis control.
        Cell. 2010; 141: 1195-1207
        • Martin T.A.
        • Goyal A.
        • Watkins G.
        • Jiang W.G.
        Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer.
        Ann Surg Oncol. 2005; 12: 488-496
        • Massaguè J.
        TGFbeta in cancer.
        Cell. 2008; 134: 215-230
        • McConkey D.J.
        • Choi W.
        • Marquis L.
        • Martin F.
        • Williams M.B.
        • Shah J.
        • et al.
        Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer.
        Cancer Metastasis Rev. 2009; 28: 335-344
        • Mego M.
        • Mani S.A.
        • Cristofanilli M.
        Molecular mechanisms of metastasis in breast cancer-clinical applications.
        Nat Rev Clin Oncol. 2010; 7: 693-701
        • Melkamu T.
        • Zhang X.
        • Tan J.
        • Zeng Y.
        • Kassie F.
        Alteration of microRNA expression in vinyl carbamate-induced mouse lung tumors and modulation by the chemopreventive agent indole-3-carbinol.
        Carcinogenesis. 2010; 31: 252-258
        • Mironchik Y.
        • Winnard Jr., P.T.
        • Vesuna F.
        • Kato Y.
        • Wildes F.
        • Pathak A.P.
        • et al.
        Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer.
        Cancer Res. 2005; 65: 10801-10809
        • Morel A.P.
        • Lievre M.
        • Thomas C.
        • Hinkal G.
        • Ansieau S.
        • Puisieux A.
        Generation of breast cancer stem cells through epithelial–mesenchymal transition.
        PLoS One. 2008; 3: e2888
        • Moreno-Bueno G.
        • Portillo F.
        • Cano A.
        Transcriptional regulation of cell polarity in EMT and cancer.
        Oncogene. 2008; 27: 6958-6969
        • Ozdamar B.
        • Bose R.
        • Barrios-Rodiles M.
        • Wang H.R.
        • Zhang Y.
        • Wrana J.L.
        Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity.
        Science. 2005; 307: 1603-1609
        • Peinado H.
        • Olmeda D.
        • Cano A.
        Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?.
        Nat Rev Cancer. 2007; 7: 415-428
        • Perez-Pomares J.M.
        • Munoz-Chapuli R.
        Epithelial–mesenchymal transitions: a mesodermal cell strategy for evolutive innovation in Metazoans.
        Anat Rec. 2002; 268: 343-351
        • Polyak K.
        • Weinberg R.A.
        Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits.
        Nat Rev Cancer. 2009; 9: 265-273
        • Radisky D.C.
        • LaBarge M.A.
        Epithelial–mesenchymal transition and the stem cell phenotype.
        Cell Stem Cell. 2008; 2: 511-512
        • Radisky E.S.
        • Radisky D.C.
        Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer.
        J Mammary Gland Biol Neoplasia. 2010; 15: 201-212
        • Ravatn R.
        • Wells V.
        • Nelson L.
        • Vettori D.
        • Mallucci L.
        • Chin K.V.
        Circumventing multidrug resistance in cancer by beta-galactoside binding protein, an antiproliferative cytokine.
        Cancer Res. 2005; 65: 1631-1634
        • Reuben J.M.
        • Lee B.N.
        • Li C.
        • Gao H.
        • Broglio K.R.
        • Valero V.
        • et al.
        Circulating tumor cells and biomarkers: implications for personalized targeted treatments for metastatic breast cancer.
        Breast J. 2010; 16: 327-330
        • Rizzo P.
        • Osipo C.
        • Foreman K.
        • Golde T.
        • Osborne B.
        • Miele L.
        Rational targeting of Notch signaling in cancer.
        Oncogene. 2008; 27: 5124-5131
        • Roussos E.T.
        • Keckesova Z.
        • Haley J.D.
        • Epstein D.M.
        • Weinberg R.A.
        • Condeelis J.S.
        AACR special conference on epithelial–mesenchymal transition and cancer progression and treatment.
        Cancer Res. 2010; 70: 7360-7364
        • Santisteban M.
        • Reiman J.M.
        • Asiedu M.K.
        • Behrens M.D.
        • Nassar A.
        • Kalli K.R.
        • et al.
        Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells.
        Cancer Res. 2009; 69: 2887-2895
        • Sarrio D.
        • Rodriguez-Pinilla S.M.
        • Hardisson D.
        • Cano A.
        • Moreno-Bueno G.
        • Palacios J.
        Epithelial–mesenchymal transition in breast cancer relates to the basal-like phenotype.
        Cancer Res. 2008; 68: 989-997
        • Seth P.
        • Wang Z.G.
        • Pister A.
        • Zafar M.B.
        • Kim S.
        • Guise T.
        • et al.
        Development of oncolytic adenovirus armed with a fusion of soluble transforming growth factor-beta receptor II and human immunoglobulin Fc for breast cancer therapy.
        Hum Gene Ther. 2006; 17: 1152-1160
        • Shah A.N.
        • Summy J.M.
        • Zhang J.
        • Park S.I.
        • Parikh N.U.
        • Gallick G.E.
        Development and characterization of gemcitabine-resistant pancreatic tumor cells.
        Ann Surg Oncol. 2007; 14: 3629-3637
        • Shimono Y.
        • Zabala M.
        • Cho R.W.
        • Lobo N.
        • Dalerba P.
        • Qian D.
        • et al.
        Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells.
        Cell. 2009; 138: 592-603
        • Shipitsin M.
        • Campbell L.L.
        • Argani P.
        • Weremowicz S.
        • Bloushtain-Qimron N.
        • Yao J.
        • et al.
        Molecular definition of breast tumor heterogeneity.
        Cancer Cell. 2007; 11: 259-273
        • Shook D.
        • Keller R.
        Mechanisms, mechanics and function of epithelial–mesenchymal transitions in early development.
        Mech Dev. 2003; 120: 1351-1383
        • Short J.J.
        • Curiel D.T.
        Oncolytic adenoviruses targeted to cancer stem cells.
        Mol Cancer Ther. 2009; 8: 2096-2102
        • Sun M.
        • Estrov Z.
        • Ji Y.
        • Coombes K.R.
        • Harris D.H.
        • Kurzrock R.
        Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells.
        Mol Cancer Ther. 2008; 7: 464-473
        • Tanimizu N.
        • Miyajima A.
        Molecular mechanism of liver development and regeneration.
        Int Rev Cytol. 2007; 259: 1-48
        • Taube J.H.
        • Herschkowitz J.I.
        • Komurov K.
        • Zhou A.Y.
        • Gupta S.
        • Yang J.
        • et al.
        Core epithelial-to-mesenchymal transition interactive gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes.
        Proc Natl Acad Sci USA. 2010; 107: 15449-15454
        • Thiery J.P.
        Epithelial–mesenchymal transitions in tumour progression.
        Nat Rev Cancer. 2002; 2: 442-454
        • Thiery J.P.
        Epithelial–mesenchymal transitions in development and pathologies.
        Curr Opin Cell Biol. 2003; 15: 740-746
        • Thiery J.P.
        • Acloque H.
        • Huang R.Y.
        • Nieto M.A.
        Epithelial–mesenchymal transitions in development and disease.
        Cell. 2009; 139: 871-890
        • Thiery J.P.
        • Sleeman J.P.
        Complex networks orchestrate epithelial–mesenchymal transitions.
        Nat Rev Mol Cell Biol. 2006; 7: 131-142
        • Tomaskovic-Crook E.
        • Thompson E.W.
        • Thiery J.P.
        Epithelial to mesenchymal transition and breast cancer.
        Breast Cancer Res. 2009; 11: 213
        • Trimboli A.J.
        • Fukino K.
        • de Bruin A.
        • Wei G.
        • Shen L.
        • Tanner S.M.
        • et al.
        Direct evidence for epithelial–mesenchymal transitions in breast cancer.
        Cancer Res. 2008; 68: 937-945
        • Tsang W.P.
        • Kwok T.T.
        Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells.
        J Nutr Biochem. 2010; 21: 140-146
        • van der Pluijm G.
        Epithelial plasticity, cancer stem cells and bone metastasis formation.
        Bone. 2011; 48: 37-43
        • Voulgari A.
        • Pintzas A.
        Epithelial–mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic.
        Biochim Biophys Acta. 2009; 1796: 75-90
        • Wang J.
        • Kuiatse I.
        • Lee A.V.
        • Pan J.
        • Giuliano A.
        • Cui X.
        Sustained c-jun-NH2-kinase activity promotes epithelial–mesenchymal transition, invasion, and survival of breast cancer cells by regulating extracellular signal-regulated kinase activation.
        Mol Cancer Res. 2010; 8: 266-277
        • Wang Z.
        • Banerjee S.
        • Li Y.
        • Rahman K.M.
        • Zhang Y.
        • Sarkar F.H.
        Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells.
        Cancer Res. 2006; 66: 2778-2784
        • Wang Z.
        • Li Y.
        • Ahmad A.
        • Azmi A.S.
        • Kong D.
        • Banerjee S.
        • et al.
        Targeting miRNAs involved in cancer stem cell and EMT regulation: an emerging concept in overcoming drug resistance.
        Drug Resist Updat. 2010; 13: 109-118
        • Wang Z.
        • Li Y.
        • Kong D.
        • Banerjee S.
        • Ahmad A.
        • Azmi A.S.
        • et al.
        Acquisition of epithelial–mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway.
        Cancer Res. 2009; 69: 2400-2407
        • Winquist R.J.
        • Boucher D.M.
        • Wood M.
        • Furey B.F.
        Targeting cancer stem cells for more effective therapies: taking out cancer’s locomotive engine.
        Biochem Pharmacol. 2009; 78: 326-334
        • Wright J.A.
        • Richer J.K.
        • Goodall G.J.
        MicroRNAs and EMT in mammary cells and breast cancer.
        J Mammary Gland Biol Neoplasia. 2010; 15: 213-223
        • Xue C.
        • Plieth D.
        • Venkov C.
        • Xu C.
        • Neilson E.G.
        The gatekeeper effect of epithelial–mesenchymal transition regulates the frequency of breast cancer metastasis.
        Cancer Res. 2003; 63: 3386-3394
        • Yan L.X.
        • Huang X.F.
        • Shao Q.
        • Huang M.Y.
        • Deng L.
        • Wu Q.L.
        • et al.
        MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis.
        RNA. 2008; 14: 2348-2360
        • Yang A.D.
        • Fan F.
        • Camp E.R.
        • van Buren G.
        • Liu W.
        • Somcio R.
        • et al.
        Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines.
        Clin Cancer Res. 2006; 12: 4147-4153
        • Yang J.
        • Mani S.A.
        • Donaher J.L.
        • Ramaswamy S.
        • Itzykson R.A.
        • Come C.
        • et al.
        Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis.
        Cell. 2004; 117: 927-939
        • Yang J.
        • Weinberg R.A.
        Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis.
        Dev Cell. 2008; 14: 818-829
        • Yu F.
        • Yao H.
        • Zhu P.
        • Zhang X.
        • Pan Q.
        • Gong C.
        • et al.
        Let-7 regulates self renewal and tumorigenicity of breast cancer cells.
        Cell. 2007; 131: 1109-1123
        • Zardawi S.J.
        • O’Toole S.A.
        • Sutherland R.L.
        • Musgrove E.A.
        Dysregulation of Hedgehog, Wnt and Notch signalling pathways in breast cancer.
        Histol Histopathol. 2009; 24: 385-398
        • Zeisberg M.
        • Neilson E.G.
        Biomarkers for epithelial–mesenchymal transitions.
        J Clin Invest. 2009; 119: 1429-1437
        • Zhao J.J.
        • Lin J.
        • Yang H.
        • Kong W.
        • He L.
        • Ma X.
        • et al.
        MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer.
        J Biol Chem. 2008; 283: 31079-31086
        • Zhuo W.
        • Wang Y.
        • Zhuo X.
        • Zhang Y.
        • Ao X.
        • Chen Z.
        Knockdown of Snail, a novel zinc finger transcription factor, via RNA interference increases A549 cell sensitivity to cisplatin via JNK/mitochondrial pathway.
        Lung Cancer. 2008; 62: 8-14
        • Zhuo W.L.
        • Wang Y.
        • Zhuo X.L.
        • Zhang Y.S.
        • Chen Z.T.
        Short interfering RNA directed against TWIST, a novel zinc finger transcription factor, increases A549 cell sensitivity to cisplatin via MAPK/mitochondrial pathway.
        Biochem Biophys Res Commun. 2008; 369: 1098-1102