Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: Phenolic acids, monophenol, polyphenol, and their derivatives

  • Author Footnotes
    c Tel.: +886 6 2532106x5129; fax: +886 6 2433837.
    Chia-Jui Weng
    Footnotes
    c Tel.: +886 6 2532106x5129; fax: +886 6 2433837.
    Affiliations
    Graduate Institute of Applied Science of Living, Tainan University of Technology, 529 Zhongzheng Rd., Yongkang District, Tainan City 71002, Taiwan
    Search for articles by this author
  • Gow-Chin Yen
    Correspondence
    Corresponding author. Tel.: +886 4 22879755; fax: +886 4 22854378.
    Affiliations
    Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan
    Search for articles by this author
  • Author Footnotes
    c Tel.: +886 6 2532106x5129; fax: +886 6 2433837.
Published:April 13, 2011DOI:https://doi.org/10.1016/j.ctrv.2011.03.001

      Abstract

      Cancer metastasis is the major cause of cancer-related death, and chemoprevention is defined as the use of natural or synthetic substances to prevent cancer formation or cancer progress. Evidence that phenolic compounds may have a potential inhibitory effect on cancer invasion and metastasis is increasingly being reported in the scientific literature. Curcumin, resveratrol, and their related derivatives are the most studied compounds in this topic so far; gallic acid, chlorogenic acid, caffeic acid, carnosol, capsaicin, 6-shogaol, 6-gingerol, and their corresponding derivatives are also suggested to be the active members of the phenolic family on anti-invasion and anti-metastasis. Because metastasis occurs through a multistep process, these bioactives might act on a variety of stages of the metastatic process to prevent tumor cells from metastasizing. This review summarizes the common protein targets and signaling pathways for the inhibition of invasion and metastasis as well as past publications on the in vitro and in vivo effects and molecular mechanisms of phenolic acids, monophenol, polyphenol, and their derivatives, except flavonoids, on cancer invasion and metastasis. Based on these data, we conclude that the daily consumption of natural dietary components that are rich in phenolics could be beneficial for the prevention of cancer metastasis.

      Abbreviations:

      Akt (protein kinase B), AP-1 (activator protein-1), BDMC (bisdemethoxycurcumin), CDCQ (3-caffeoyl,4-dihydrocaffeoylquinic acid), CGA (chlorogenic acid), DMC (demethoxycurcumin), ECM (extracellular matrix), EGF (epidermal growth factor), EMT (epithelial–mesenchymal transition), ERK (extracellular signal-regulated kinase), FAK (focal adhesion kinase), FGF (fibroblast growth factor), GA (gallic acid), HGF (hepatocyte growth factor), HIF (hypoxia-inducible factors), ICAM (intercellular adhesion molecule), IKK (IkBα kinase), JNK (c-Jun N-terminal kinase), MAPK (mitogen activated protein kinase), MMP (matrix metalloproteinase), MR-3 (3,5,4′-trimethoxy-trans-stilbene), MT-1 MMP (membrane type-1 MMP), NF-κB (nuclear factor-kappaB), p38/MAPK (p38 mitogen-activated protein kinase), PAI (plasminogen activator inhibitor), PI3K (phosphoinositide-3 kinase), PKC (protein kinase C), PMA (phorbol-12-myristate-13-acetate), ROS (reactive oxygen species), TGFβ (transforming growth factor β), TIMP (tissue inhibitor metalloproteinase protein), TNF (tumor necrosis factor), uPA (urokinase plasminogen activator)

      Keywords

      To read this article in full you will need to make a payment

      References

        • Weiss L.
        Metastatic inefficiency.
        Adv Cancer Res. 1990; 54: 159-211
        • Liotta L.A.
        • Steeg P.S.
        • Stetter-Stevenson W.G.
        Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation.
        Cell. 1991; 64: 327-336
        • Condeelis J.
        • Segall J.E.
        Intravital imaging of cell movement in tumours.
        Nat Rev Cancer. 2003; 3: 921-930
        • Van Sumere C.F.
        Phenols, and phenolic acids.
        in: Harborne J.B. Methods in plant biochemistry, Volume 1. Plant Phenolics. Academic Press, London1989: 29-74
        • Shahidi F.
        Antioxidants in food and food antioxidants.
        Nahrung. 2000; 44: 158-163
        • Shahidi F.
        Antioxidants in plants and oleaginous seeds.
        in: Morello M.J. Shahidi F. Ho C.T. Free radicals in food: chemistry, nutrition, and health effects. ACS Symposium Series 807 Washington. American Chemical Society, DC2002 (p. 162–75)
        • Sliva D.
        Suppression of cancer invasiveness by dietary compounds.
        Mini Rev Med Chem. 2008; 8: 677-688
        • MacDonald N.J.
        • Steeg P.S.
        Molecular basis of tumor metastasis.
        in: Lemoine N.R. Wright N.A. The molecular pathology of cancer. Cold Spring Harbor Laboratory, Plainview NY1993: 175-199
        • Liotta L.A.
        • Rao C.N.
        • Barsky S.H.
        Tumour invasion and the extracellular matrix.
        Lab Invest. 1983; 49: 636-649
        • Kaplan R.N.
        • Riba R.D.
        • Zacharoulis S.
        • et al.
        VEGFR1-positive haematopoietic bone marrow progenitors initiate the premetastatic niche.
        Nature. 2005; 438: 820-827
        • Woodhouse E.C.
        • Chuaqui R.F.
        • Liotta L.A.
        General mechanisms of metastasis.
        Cancer. 1997; 80: 529-537
        • Thiery J.P.
        Epithelial–mesenchymal transitions in tumour progression.
        Nat Rev Cancer. 2002; 2: 442-454
        • Christofori G.
        New signals from the invasive front.
        Nature. 2006; 441: 444-450
        • Yang J.
        • Weinberg R.A.
        Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis.
        Dev Cell. 2008; 14: 818-829
        • Jechlinger M.
        • Grunert S.
        • Tamir I.H.
        • et al.
        Expression profiling of epithelial plasticity in tumor progression.
        Oncogene. 2003; 22: 7155-7169
        • Wong A.S.T.
        • Gumbiner B.M.
        Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin.
        J Cell Biol. 2003; 161: 1191-1203
        • Nakajima S.
        • Doi R.
        • Toyoda E.
        • et al.
        N-cadherin expression and epithelial–mesenchymal transition in pancreatic carcinoma.
        Clin Cancer Res. 2004; 10: 4125-4133
        • Huber M.A.
        • Azoitei N.
        • Baumann B.
        • et al.
        NF-kappaB is essential for epithelial–mesenchymal transition and metastasis in a model of breast cancer progression.
        J Clin Invest. 2004; 114: 569-581
        • Massague J.
        TGFbeta in Cancer.
        Cell. 2008; 134: 215-230
        • Huber M.A.
        • Kraut N.
        • Beug H.
        Molecular requirements for epithelial–mesenchymal transition during tumor progression.
        Curr Opin Cell Biol. 2005; 17: 548-558
        • Batlle E.
        • Sancho E.
        • Franci C.
        • et al.
        The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells.
        Nat Cell Biol. 2000; 2: 84-89
        • Cano A.
        • Perez-Moreno M.A.
        • Rodrigo I.
        • et al.
        The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression.
        Nat Cell Biol. 2000; 2: 76-83
        • Comijn J.
        • Berx G.
        • Vermassen P.
        • et al.
        The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion.
        Mol Cell. 2001; 7: 1267-1278
        • Yang J.
        • Mani S.A.
        • Donaher J.L.
        • et al.
        Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis.
        Cell. 2004; 117: 927-939
        • Eger A.
        • Aigner K.
        • Sonderegger S.
        • et al.
        DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells.
        Oncogene. 2005; 24: 2375-2385
        • Hood J.D.
        • Cheresh D.A.
        Role of integrins in cell invasion and migration.
        Nat Rev Cancer. 2002; 2: 91-99
        • Friedl P.
        • Wolf K.
        Tumour-cell invasion and migration: diversity and escape mechanisms.
        Nat Rev Cancer. 2003; 3: 362-374
        • Guo W.
        • Giancotti F.G.
        Integrin signalling during tumour progression.
        Nat Rev Mol Cell Biol. 2004; 5: 816-826
        • Ghosh M.
        • Song X.
        • Mouneimne G.
        • et al.
        Cofilin promotes actin polymerization and defines the direction of cell motility.
        Science. 2004; 304: 743-746
        • Pollard T.D.
        • Borisy G.G.
        Cellular motility driven by assembly and disassembly of actin filaments.
        Cell. 2003; 112: 453-465
        • Wang W.
        • Eddy R.
        • Condeelis J.
        The cofilin pathway in breast cancer invasion and metastasis.
        Nat Rev Cancer. 2007; 7: 429-440
        • Kim M.
        • Gans J.D.
        • Nogueira C.
        • et al.
        Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene.
        Cell. 2006; 125: 1269-1281
        • Sanz-Moreno V.
        • Gadea G.
        • Ahn J.
        • et al.
        Rac activation and inactivation control plasticity of tumor cell movement.
        Cell. 2008; 135: 510-523
        • Bates R.C.
        • Edwards N.S.
        • Yates J.D.
        Spheroids and cell survival.
        Crit Rev Oncol Hematol. 2000; 36: 61-74
        • Wicki A.
        • Lehembre F.
        • Wick N.
        • et al.
        Tumorinvasion in the absence of epithelial–mesenchymal transition: podoplaninmediated remodeling of the actin cytoskeleton.
        Cancer Cell. 2006; 9: 261-272
        • Ponta H.
        • Sherman L.
        • Herrlich P.A.
        CD44: from adhesion molecules to signaling regulators.
        Nat Rev Mol Cell Biol. 2003; 4: 33-45
        • Cavallaro U.
        • Christofori G.
        Cell adhesion and signalling by cadherins and Ig-CAMs in cancer.
        Nat Rev Cancer. 2004; 4: 118-132
        • Weber G.F.
        Molecular mechanisms of metastasis.
        Cancer Lett. 2008; 270: 181-190
        • Kleiner D.E.
        • Stetler-Stevenson W.G.
        Matrix metalloproteinases and metastasis.
        Cancer Chemother Pharmacol. 1999; 43: S41-S51
        • Westermarck J.
        • Kahari V.M.
        Regulation of matrix metalloproteinase expression in tumor invasion.
        FASEB J. 1999; 13: 781-792
        • Rao J.S.
        Molecular mechanisms of glioma invasiveness: the role of proteases.
        Nat Rev Cancer. 2003; 3: 489-501
        • Basset P.
        • Okada A.
        • Chenard M.P.
        • et al.
        Matrix metalloproteinases as stromal effectors of human carcinoma progression: therapeutic implications.
        Matrix Biol. 1997; 15: 535-541
        • Nelson A.R.
        • Fingleton B.
        • Rothenberg M.L.
        • Matrisian L.M.
        Matrix metalloproteinases: biologic activity and clinical implications.
        J Clin Oncol. 2000; 18: 1135-1149
        • Chung T.W.
        • Moon S.K.
        • Lee Y.C.
        • et al.
        Enhanced expression of matrix metalloproteinase-9 by hepatitis B virus infection in liver cells.
        Arch Biochem Biophys. 2002; 408: 147-154
        • Mazar A.P.
        The urokinase plasminogen activator receptor (uPAR) as a target for the diagnosis and therapy of cancer.
        Anticancer Drugs. 2001; 12: 387-400
        • Sliva D.
        • Labarrere C.
        • Slivova V.
        • et al.
        Ganoderma lucidum suppresses motility of highly invasive breast and prostate cancer cells.
        Biochem Biophys Res Commun. 2002; 298: 603-612
        • Blasi F.
        • Carmeliet P.
        UPAR: a versatile signalling orchestrator.
        Nat Rev Mol Cell Biol. 2002; 3: 932-943
        • Sidenius N.
        • Blasi F.
        The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy.
        Cancer Metastasis Rev. 2003; 22: 205-222
        • Han B.
        • Nakamura M.
        • Mori I.
        • et al.
        Urokinase-type plasminogen activator system and breast cancer (Review).
        Oncol Rep. 2005; 14: 105-112
        • Sakakibara T.
        • Hibi K.
        • Koike M.
        • et al.
        Plasminogen activator inhibitor-1 as a potential marker for the malignancy of colorectal cancer.
        Br J Cancer. 2005; 93: 799-803
        • Duggan C.
        • Kennedy S.
        • Kramer M.D.
        • et al.
        Plasminogen activator inhibitor type 2 in breast cancer.
        Br J Cancer. 1997; 76: 622-627
        • Fredstorp-Lidebring M.
        • Bendahl P.O.
        • Brunner N.
        • et al.
        Urokinase plasminogen activator and its inhibitor PAI-1, in association with progression-free survival in early stage endometrial cancer.
        Eur J Cancer. 2001; 37: 2339-2348
        • Jinga D.C.
        • Blidaru A.
        • Condrea I.
        • et al.
        MMP-9 and MMP-2 gelatinases and TIMP-1 and TIMP-2 inhibitors in breast cancer: correlations with prognostic factors.
        J Cell Mol Med. 2006; 10: 499-510
        • Sato H.
        • Seiki M.
        Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells.
        Oncogene. 1993; 8: 395-405
        • Takada Y.
        • Singh S.
        • Aggarwal B.B.
        Identification of a p65 peptide that selectively inhibits NF-kappa B activation induced by various inflammatory stimuli and its role in down-regulation of NF-kappa B-mediated gene expression and up-regulation of apoptosis.
        J Biol Chem. 2004; 279: 15096-15104
        • Park S.K.
        • Hwang Y.S.
        • Park K.K.
        • et al.
        Kalopanaxsaponin A inhibits PMA-induced invasion by reducing matrix metalloproteinase-9 via PI3K/Akt- and PKCdelta-mediated signaling in MCF-7 human breast cancer cells.
        Carcinogenesis. 2009; 30: 1225-1233
        • Takahra T.
        • Smart D.E.
        • Oakley F.
        • Mann D.A.
        Induction of myofibroblast MMP-9 transcription in three-dimensional collagen I gel cultures: regulation by NF-kappaB, AP-1 and Sp1.
        Int J Biochem Cell Biol. 2004; 36: 353-363
        • Gum R.
        • Wang H.
        • Lengyel E.
        • et al.
        Regulation of 92-kDa type IV collagenase expression by the jun aminoterminal kinase and the extracellular signal-regulated kinase-dependent signaling cascades.
        Oncogene. 1997; 14: 1481-1493
        • Newton A.C.
        Regulation of protein kinase C.
        Curr Opin Cell Biol. 1997; 9: 161-167
        • Zeigler M.E.
        • Chi Y.
        • Schmidt T.
        • Varani J.
        Role of ERK and JNK pathways in regulating cell motility and matrix metalloproteinase 9 production in growth factor-stimulated human epidermal keratinocytes.
        J Cell Physiol. 1999; 180: 271-284
        • Hozumi A.
        • Nishimura Y.
        • Nishiuma T.
        • et al.
        Induction of MMP-9 in normal human bronchial epithelial cells by TNF- via NF-kB-mediated pathway.
        Am J Physiol Lung Cell Mol Physiol. 2001; 281: L1444-L1452
        • Liu P.
        • Kimmoun E.
        • Legrand A.
        • et al.
        Activation of NF-kB, AP-1, and STAT transcription factors is a frequent and early event in human hepatocellular carcinomas.
        J Hepatol. 2002; 37: 63-71
        • McDougall S.R.
        • Anderson A.R.
        • Chaplain M.A.
        Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies.
        J Theor Biol. 2006; 241: 564-589
        • Bergers G.
        • Benjamin L.E.
        Tumorigenesis and the angiogenic switch.
        Nat Rev Cancer. 2003; 3: 401-410
        • Kalluri R.
        Basement membranes: structure, assembly and role in tumour angiogenesis.
        Nat Rev Cancer. 2003; 3: 422-433
        • Harris A.L.
        Hypoxia – a key regulatory factor in tumour growth.
        Nat Rev Cancer. 2002; 2: 38-47
        • Sullivan R.
        • Graham C.H.
        Hypoxia-driven selection of the metastatic phenotype.
        Cancer Metastasis Rev. 2007; 26: 319-331
        • Semenza G.L.
        Targeting HIF-1 for cancer therapy.
        Nat Rev Cancer. 2003; 3: 721-732
        • Staller P.
        • Sulitkova J.
        • Lisztwan J.
        • et al.
        Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL.
        Nature. 2003; 425: 307-311
        • Higgins D.F.
        • Kimura K.
        • Bernhardt W.M.
        • et al.
        Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to mesenchymal transition.
        J Clin Invest. 2007; 117: 3810-3820
        • Imai T.
        • Horiuchi A.
        • Wang C.
        • et al.
        Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells.
        Am J Pathol. 2003; 163: 1437-1447
        • Krishnamachary B.
        • Zagzag D.
        • Nagasawa H.
        • et al.
        Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel–Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B.
        Cancer Res. 2006; 66: 2725-2731
        • Evans A.J.
        • Russell R.C.
        • Roche O.
        • et al.
        VHL promotes E2 box-dependent E-cadherin transcription by HIF-mediated regulation of SIP1 and snail.
        Mol Cell Biol. 2007; 27: 157-169
        • Yang M.H.
        • Wu M.Z.
        • Chiou S.H.
        • et al.
        Direct regulation of TWIST by HIF-1alpha promotes metastasis.
        Nat Cell Biol. 2008; 10: 295-305
      1. Fuchs E. Das Sarcom des Uvealtractus. In: Braumueller W, editor. Metastasenbildung. Wien: Wilhelm Braumuller;1882; p. 197–206.

        • Paget S.
        The distribution of secondary growths in cancer of the breast.
        Lancet. 1889; 1: 571-573
        • Fidler I.J.
        The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited.
        Nat Rev Cancer. 2003; 3: 453-458
        • Ruoslahti E.
        • Rajotte D.
        An address system in the vasculature of normal tissues and tumors.
        Annu Rev Immunol. 2000; 18: 813-827
        • Brown D.M.
        • Ruoslahti E.
        Metadherin, a cell surface protein in breast tumors that mediates lung metastasis.
        Cancer Cell. 2004; 5: 365-374
        • Muller A.
        • Homey B.
        • Soto H.
        • et al.
        Involvement of chemokine receptors in breast cancer metastasis.
        Nature. 2001; 410: 50-56
        • Lin L.I.
        • Ke Y.F.
        • Ko Y.C.
        • Lin J.K.
        Curcumin inhibits SK-Hep-1 hepatocellular carcinoma cell invasion in vitro and suppresses matrix metalloproteinase-9 secretion.
        Oncology. 1998; 55: 349-353
        • Ohashi Y.
        • Tsuchiya Y.
        • Koizumi K.
        • et al.
        Prevention of intrahepatic metastasis by curcumin in an orthotopic implantation model.
        Oncology. 2003; 65: 250-258
        • Kozuki Y.
        • Miura Y.
        • Yagasaki K.
        Inhibitory effect of curcumin on the invasion of rat ascites hepatoma cells in vitro and ex vivo.
        Cytotechnology. 2001; 35: 57-63
        • Lin S.S.
        • Lai K.C.
        • Hsu S.C.
        • et al.
        Curcumin inhibits the migration and invasion of human A549 lung cancer cells through the inhibition of matrix metalloproteinase-2 and -9 and Vascular Endothelial Growth Factor (VEGF).
        Cancer Lett. 2009; 285: 127-133
        • Chen H.W.
        • Yu S.L.
        • Chen J.J.
        • et al.
        Anti-invasive gene expression profile of curcumin in lung adenocarcinoma based on a high throughput microarray analysis.
        Mol Pharmacol. 2004; 65: 99-110
        • Chen H.W.
        • Lee J.Y.
        • Huang J.Y.
        • et al.
        Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1.
        Cancer Res. 2008; 68: 7428-7438
        • Shao Z.M.
        • Shen Z.Z.
        • Liu C.H.
        • et al.
        Curcumin exerts multiple suppressive effects on human breast carcinoma cells.
        Int J Cancer. 2002; 98: 234-240
        • Bachmeier B.
        • Nerlich A.G.
        • Iancu C.M.
        • et al.
        The chemopreventive polyphenol Curcumin prevents hematogenous breast cancer metastases in immunodeficient mice.
        Cell Physiol Biochem. 2007; 19: 137-152
        • Narasimhan M.
        • Ammanamanchi S.
        Curcumin blocks RON tyrosine kinase-mediated invasion of breast carcinoma cells.
        Cancer Res. 2008; 68: 5185-5192
        • Yodkeeree S.
        • Ampasavate C.
        • Sung B.
        • et al.
        Demethoxycurcumin suppresses migration and invasion of MDA-MB-231 human breast cancer cell line.
        Eur J Pharmacol. 2010; 627: 8-15
        • Kim H.I.
        • Huang H.
        • Cheepala S.
        • et al.
        Curcumin inhibition of integrin (alpha6beta4)-dependent breast cancer cell motility and invasion.
        Cancer Prev Res. 2008; 1: 385-391
        • Aggarwal B.B.
        • Shishodia S.
        • Takada Y.
        • et al.
        Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice.
        Clin Cancer Res. 2005; 11: 7490-7498
        • Prasad C.P.
        • Rath G.
        • Mathur S.
        • et al.
        Expression analysis of maspin in invasive ductal carcinoma of breast and modulation of its expression by curcumin in breast cancer cell lines.
        Chem Biol Interact. 2010; 183: 455-461
        • Holy J.
        Curcumin inhibits cell motility and alters microfilament organization and function in prostate cancer cells.
        Cell Motil Cytoskel. 2004; 58: 253-268
        • Herman J.G.
        • Stadelman H.L.
        • Roselli C.E.
        Curcumin blocks CCL2-induced adhesion, motility and invasion, in part, through down-regulation of CCL2 expression and proteolytic activity.
        Int J Oncol. 2009; 34: 1319-1327
        • Hong J.H.
        • Ahn K.S.
        • Bae E.
        • et al.
        The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivo.
        Prostate Cancer Prostatic Dis. 2006; 9: 147-152
        • Mitra A.
        • Chakrabarti J.
        • Banerji A.
        • et al.
        Curcumin, a potential inhibitor of MMP-2 in human laryngeal squamous carcinoma cells HEp2.
        J Environ Pathol Toxicol Oncol. 2006; 25: 679-690
        • Wang X.
        • Wang Q.
        • Ives K.L.
        • Evers B.M.
        Curcumin inhibits neurotensin-mediated interleukin-8 production and migration of HCT116 human colon cancer cells.
        Clin Cancer Res. 2006; 12: 5346-5355
        • Su C.C.
        • Chen G.W.
        • Lin J.G.
        • et al.
        Curcumin inhibits cell migration of human colon cancer colo 205 cells through the inhibition of nuclear factor kappa B/p65 and down-regulates cyclooxygenase-2 and matrix metalloproteinase-2 expressions.
        Anticancer Res. 2006; 26: 1281-1288
        • Yodkeeree S.
        • Garbisa S.
        • Limtrakul P.
        Tetrahydrocurcumin inhibits HT1080 cell migration and invasion via downregulation of MMPs and uPA.
        Acta Pharmacol Sin. 2008; 29: 853-860
        • Yodkeeree S.
        • Chaiwangyen W.
        • Garbisa S.
        • Limtrakul P.
        Curcumin, demethoxycurcumin and bisdemethoxycurcumin differentially inhibit cancer cell invasion through the down-regulation of MMPs and uPA.
        J Nutr Biochem. 2009; 20: 87-95
        • Menon L.G.
        • Kuttan R.
        • Kuttan G.
        Anti-metastatic activity of curcumin and catechin.
        Cancer Lett. 1999; 141: 159-165
        • Philip S.
        • Kundu G.C.
        Osteopontin induces nuclear factor kappa B-mediated promatrix metalloproteinase-2 activation through I kappa B alpha/IKK signaling pathways, and curcumin (diferulolylmethane) down-regulates these pathways.
        J Biol Chem. 2003; 278: 14487-14497
        • Philip S.
        • Bulbule A.
        • Kundu G.C.
        Matrix metalloproteinase-2: mechanism and regulation of NF-kappaB-mediated activation and its role in cell motility and ECM-invasion.
        Glycoconj J. 2004; 21: 429-441
        • Cai X.Z.
        • Wang J.
        • Li X.D.
        • et al.
        Curcumin suppresses proliferation and invasion in human gastric cancer cells by downregulation of PAK1 activity and cyclin D1 expression.
        Cancer Biol Ther. 2009; 8: 1360-1368
        • Wang W.X.
        • Sun S.Z.
        • Guo X.L.
        • Song Y.
        Effect of curcumin on invasion and migration of tongue squamous cell carcinoma cell line Tca8113.
        Zhonghua Kou Qiang Yi Xue Za Zhi. 2008; 43: 101-104
        • Shin H.K.
        • Kim J.
        • Lee E.J.
        • Kim S.H.
        Inhibitory effect of curcumin on motility of human oral squamous carcinoma YD-10B cells via suppression of ERK and NF-kappaB activations.
        Phytother Res. 2010; 24: 577-582
        • Kim S.Y.
        • Jung S.H.
        • Kim H.S.
        Curcumin is a potent broad spectrum inhibitor of matrix metalloproteinase gene expression in human astroglioma cells.
        Biochem Biophys Res Commun. 2005; 337: 510-516
        • Woo M.S.
        • Jung S.H.
        • Kim S.Y.
        • et al.
        Curcumin suppresses phorbol ester-induced matrix metalloproteinase-9 expression by inhibiting the PKC to MAPK signaling pathways in human astroglioma cells.
        Biochem Biophys Res Commun. 2005; 335: 1017-1025
        • Tsunoda K.
        • Kitange G.
        • Anda T.
        • et al.
        Expression of the constitutively activated RelA/NF-kappaB in human astrocytic tumors and the in vitro implication in the regulation of urokinase-type plasminogen activator, migration, and invasion.
        Brain Tumor Pathol. 2005; 22: 79-87
        • Perry M.C.
        • Demeule M.
        • Régina A.
        • et al.
        Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts.
        Mol Nutr Food Res. 2010; 54: 1192-1201
        • Leow P.C.
        • Tian Q.
        • Ong Z.Y.
        • et al.
        Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/beta-catenin antagonists against human osteosarcoma cells.
        Invest New Drugs. 2010; 28: 766-782
        • Seo J.H.
        • Jeong K.J.
        • Oh W.J.
        • et al.
        Lysophosphatidic acid induces STAT3 phosphorylation and ovarian cancer cell motility: their inhibition by curcumin.
        Cancer Lett. 2010; 288: 50-56
        • Baur J.A.
        • Sinclair D.A.
        Therapeutic potential of resveratrol: the in vivo evidence.
        Nat Rev Drug Discov. 2006; 5: 493-506
        • Sun C.Y.
        • Hu Y.
        • Liu X.Y.
        • et al.
        Resveratrol downregulates the constitutional activation of nuclear factor-kappaB in multiple myeloma cells, leading to suppression of proliferation and invasion, arrest of cell cycle, and induction of apoptosis.
        Cancer Genet Cytogenet. 2006; 165: 9-19
        • Wu H.
        • Liang X.
        • Fang Y.
        • et al.
        Resveratrol inhibits hypoxia-induced metastasis potential enhancement by restricting hypoxia-induced factor-1 alpha expression in colon carcinoma cells.
        Biomed Pharmacother. 2008; 62: 613-621
        • Kozuki Y.
        • Miura Y.
        • Yagasaki K.
        Resveratrol suppresses hepatoma cell invasion independently of its anti-proliferative action.
        Cancer Lett. 2001; 167: 151-156
        • Miura D.
        • Miura Y.
        • Yagasaki K.
        Resveratrol inhibits hepatoma cell invasion by suppressing gene expression of hepatocyte growth factor via its reactive oxygen species-scavenging property.
        Clin Exp Metastasis. 2004; 21: 445-451
        • Yu H.
        • Pan C.
        • Zhao S.
        • et al.
        Resveratrol inhibits tumor necrosis factor-alpha-mediated matrix metalloproteinase-9 expression and invasion of human hepatocellular carcinoma cells.
        Biomed Pharmacother. 2008; 62: 366-372
        • Yu H.B.
        • Pan C.E.
        • Wu W.J.
        • et al.
        Effects of resveratrol on matrix metalloproteinase-9 expression in hepatoma cells.
        Zhong Xi Yi Jie He Xue Bao. 2008; 6: 270-273
        • Weng C.J.
        • Wu C.F.
        • Huang H.W.
        • Wu C.H.
        • Ho C.T.
        • Yen G.C.
        Evaluation of anti-invasion effect of resveratrol and related methoxy analogues on human hepatocarcinoma cells.
        J Agric Food Chem. 2010; 58: 2886-2894
        • Pan M.H.
        • Chiou Y.S.
        • Chen W.J.
        • Wang J.M.
        • Badmaev V.
        • Ho C.T.
        Pterostilbene inhibited tumor invasion via suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells.
        Carcinogenesis. 2009; 30: 1234-1242
        • Kimura Y.
        • Okuda H.
        Resveratrol isolated from Polygonum cuspidatum root prevents tumor growth and metastasis to lung and tumor-induced neovascularization in Lewis lung carcinoma-bearing mice.
        J Nutr. 2001; 131: 1844-1849
        • Busquets S.
        • Ametller E.
        • Fuster G.
        • et al.
        Resveratrol, a natural diphenol, reduces metastatic growth in an experimental cancer model.
        Cancer Lett. 2007; 245: 144-148
        • Liu P.L.
        • Tsai J.R.
        • Charles A.L.
        • et al.
        Resveratrol inhibits human lung adenocarcinoma cell metastasis by suppressing heme oxygenase 1-mediated nuclear factor-kappaB pathway and subsequently downregulating expression of matrix metalloproteinases.
        Mol Nutr Food Res. 2010; 54: S196-204
        • Huang N.
        • Lu H.
        • Chang L.
        • et al.
        Resveratrol inhibits EGF-induced invasion of human lung adenocarcinoma A549 cells.
        Zhongguo Fei Ai Za Zhi. 2010; 13: 287-291
        • Yang Y.T.
        • Weng C.J.
        • Ho C.T.
        • Yen G.C.
        Resveratrol analog-3,5,4′-trimethoxy-trans-stilbene inhibits invasion of human lung adeno-carcinoma cells by suppressing the MAPK pathway and decreasing matrix metalloproteinase-2 expression.
        Mol Nutr Food Res. 2009; 53: 407-416
        • Azios N.G.
        • Dharmawardhane S.F.
        Resveratrol and estradiol exert disparate effects on cell migration, cell surface actin structures, and focal adhesion assembly in MDA-MB-231 human breast cancer cells.
        Neoplasia. 2005; 7: 128-140
        • Tang F.Y.
        • Chiang E.P.
        • Sun Y.C.
        Resveratrol inhibits heregulin-beta1-mediated matrix metalloproteinase-9 expression and cell invasion in human breast cancer cells.
        J Nutr Biochem. 2008; 19: 287-294
      2. Pan MH, Lin YT, Lin CL, Wei CS, Ho CT, Chen WJ. Suppression of heregulin-{beta}1/HER2-modulated invasive and aggressive phenotype of breast carcinoma by pterostilbene via inhibition of matrix metalloproteinase-9, p38 kinase cascade and Akt activation. Evid Based Complement Alternat Med [in press].

        • Rodrigue C.M.
        • Porteu F.
        • Navarro N.
        • et al.
        The cancer chemopreventive agent resveratrol induces tensin, a cell–matrix adhesion protein with signaling and antitumor activities.
        Oncogene. 2005; 24: 3274-3284
        • Tang F.Y.
        • Su Y.C.
        • Chen N.C.
        • et al.
        Resveratrol inhibits migration and invasion of human breast-cancer cells.
        Mol Nutr Food Res. 2008; 52: 683-691
        • Günther S.
        • Ruhe C.
        • Derikito M.G.
        • et al.
        Polyphenols prevent cell shedding from mouse mammary cancer spheroids and inhibit cancer cell invasion in confrontation cultures derived from embryonic stem cells.
        Cancer Lett. 2007; 250: 25-35
        • Gagliano N.
        • Moscheni C.
        • Torri C.
        • et al.
        Effect of resveratrol on matrix metalloproteinase-2 (MMP-2) and Secreted Protein Acidic and Rich in Cysteine (SPARC) on human cultured glioblastoma cells.
        Biomed Pharmacother. 2005; 59: 359-364
        • Asensi M.
        • Medina I.
        • Ortega A.
        • et al.
        Inhibition of cancer growth by resveratrol is related to its low bioavailability.
        Free Radic Biol Med. 2002; 33: 387-398
        • Ferrer P.
        • Asensi M.
        • Segarra R.
        • et al.
        Association between pterostilbene and quercetin inhibits metastatic activity of B16 melanoma.
        Neoplasia. 2005; 7: 37-47
        • Qin Y.M.
        • Li K.
        • He T.P.
        • et al.
        Study on the effect of resveratrol on metastasis-associated ability of ovarian carcinoma HO-8910PM cells in vitro.
        Zhong Yao Cai. 2007; 30: 176-178
        • Park S.Y.
        • Jeong K.J.
        • Lee J.
        • et al.
        Hypoxia enhances LPA-induced HIF-1alpha and VEGF expression: their inhibition by resveratrol.
        Cancer Lett. 2007; 258: 63-69
        • Weng Y.L.
        • Liao H.F.
        • Li A.F.
        • Chang J.C.
        • Chiou R.Y.
        Oral administration of resveratrol in suppression of pulmonary metastasis of BALB/c mice challenged with CT26 colorectal adenocarcinoma cells.
        Mol Nutr Food Res. 2010; 54: 259-267
        • Park J.S.
        • Kim K.M.
        • Kim M.H.
        • et al.
        Resveratrol inhibits tumor cell adhesion to endothelial cells by blocking ICAM-1 expression.
        Anticancer Res. 2009; 29: 355-362
        • Sun C.Y.
        • Hu Y.
        • Guo T.
        • et al.
        Resveratrol as a novel agent for treatment of multiple myeloma with matrix metalloproteinase inhibitory activity.
        Acta Pharmacol Sin. 2006; 27: 1447-1452
        • Belleri M.
        • Ribatti D.
        • Nicoli S.
        • et al.
        Antiangiogenic and vascular-targeting activity of the microtubule-destabilizing trans-resveratrol derivative 3,5,4′-tri-methoxystilbene.
        Mol Pharmacol. 2005; 67: 1451-1459
        • Belleri M.
        • Ribatti D.
        • Savio M.
        • et al.
        Alphavbeta3 integrin-dependent antiangiogenic activity of resveratrol stereoisomers.
        Mol Cancer Ther. 2008; 7: 3761-3770
        • Ho H.H.
        • Chang C.S.
        • Ho W.C.
        • et al.
        Anti-metastasis effects of gallic acid on gastric cancer cells involves inhibition of NF-kappaB activity and downregulation of PI3K/AKT/small GTPase signals.
        Food Chem Toxicol. 2010; 48: 2508-2516
        • Ohno T.
        • Inoue M.
        • Ogihara Y.
        Cytotoxic activity of gallic acid against liver metastasis of mastocytoma cells P-815.
        Anticancer Res. 2001; 21: 3875-3880
        • Lu Y.
        • Jiang F.
        • Jiang H.
        • et al.
        Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells.
        Eur J Pharmacol. 2010; 641: 102-107
        • Yagasaki K.
        • Miura Y.
        • Okauchi R.
        • Furuse T.
        Inhibitory effects of chlorogenic acid and its related compounds on the invasion of hepatoma cells in culture.
        Cytotechnology. 2000; 33: 229-235
        • Jin U.H.
        • Lee J.Y.
        • Kang S.K.
        • et al.
        A phenolic compound, 5-caffeoylquinic acid (chlorogenic acid), is a new type and strong matrix metalloproteinase-9 inhibitor: isolation and identification from methanol extract of Euonymus alatus.
        Life Sci. 2005; 77: 2760-2769
        • Belkaid A.
        • Currie J.C.
        • Desgagnés J.
        • Annabi B.
        The chemopreventive properties of chlorogenic acid reveal a potential new role for the microsomal glucose-6-phosphate translocase in brain tumor progression.
        Cancer Cell Int. 2006; 6: 7
        • Hwang Y.P.
        • Yun H.J.
        • Choi J.H.
        • et al.
        3-Caffeoyl, 4-dihydrocaffeoylquinic acid from Salicornia herbacea inhibits tumor cell invasion by regulating protein kinase C-delta-dependent matrix metalloproteinase-9 expression.
        Toxicol Lett. 2010; 198: 200-209
        • Grunberger D.
        • Banerjee R.
        • Eisinger K.
        • et al.
        Preferential cytotoxicity on tumor cells by caffeic acid phenethyl ester isolated from propolis.
        Experientia. 1988; 44: 230-232
        • Nagaoka T.
        • Banskota A.H.
        • Tezuka Y.
        • et al.
        Selective antiproliferative activity of caffeic acid phenethyl ester analogues on highly liver-metastatic murine colon 26–L5 carcinoma cell line.
        Bioorg Med Chem. 2002; 10: 3351-3359
        • Chung T.W.
        • Moon S.K.
        • Chang Y.C.
        • et al.
        Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: complete regression of hepatoma growth and metastasis by dual mechanism.
        FASEB J. 2004; 18: 1670-1681
        • Lee K.W.
        • Kang N.J.
        • Kim J.H.
        • et al.
        Caffeic acid phenethyl ester inhibits invasion and expression of matrix metalloproteinase in SK-Hep1 human hepatocellular carcinoma cells by targeting nuclear factor kappa B.
        Genes Nutr. 2008; 2: 319-322
        • Lansky E.P.
        • Harrison G.
        • Froom P.
        • Jiang W.G.
        Pomegranate (Punica granatum) pure chemicals show possible synergistic inhibition of human PC-3 prostate cancer cell invasion across Matrigel.
        Invest New Drugs. 2005; 23: 121-122
        • Liao H.F.
        • Chen Y.Y.
        • Liu J.J.
        • et al.
        Inhibitory effect of caffeic acid phenethyl ester on angiogenesis, tumor invasion, and metastasis.
        J Agric Food Chem. 2003; 51: 7907-7912
        • Hwang H.J.
        • Park H.J.
        • Chung H.J.
        • et al.
        Inhibitory effects of caffeic acid phenethyl ester on cancer cell metastasis mediated by the down-regulation of matrix metalloproteinase expression in human HT1080 fibrosarcoma cells.
        J Nutr Biochem. 2006; 17: 356-362
        • Huang S.C.
        • Ho C.T.
        • Lin-Shiau S.Y.
        • Lin J.K.
        Carnosol inhibits the invasion of B16/F10 mouse melanoma cells by suppressing metalloproteinase-9 through down-regulating nuclear factor-kappa B and c-Jun.
        Biochem Pharmacol. 2005; 69: 221-232
        • Shin D.H.
        • Kim O.H.
        • Jun H.S.
        • Kang M.K.
        Inhibitory effect of capsaicin on B16–F10 melanoma cell migration via the phosphatidylinositol 3-kinase/Akt/Rac1 signal pathway.
        Exp Mol Med. 2008; 40: 486-494
        • Weng C.J.
        • Wu C.F.
        • Huang H.W.
        • Ho C.T.
        • Yen
        • GC
        Anti-invasion effects of 6-shogaol and 6-gingerol, two active components in ginger, on human hepatocarcinoma cells.
        Mol Nutr Food Res. 2010; 54: 1618-1627
        • Yagihashi S.
        • Miura Y.
        • Yagasaki K.
        Inhibitory effect of gingerol on the proliferation and invasion of hepatoma cells in culture.
        Cytotechnology. 2008; 57: 129-136
        • Lee H.S.
        • Seo E.Y.
        • Kang N.E.
        • Kim W.K.
        6-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells.
        J Nutr Biochem. 2008; 19: 313-319
        • Kim E.C.
        • Min J.K.
        • Kim T.Y.
        • et al.
        [6-Gingerol, a pungent ingredient of ginger, inhibits angiogenesis in vitro and in vivo.
        Biochem Biophys Res Commun. 2005; 335: 300-308