Advertisement

Altered fractionation in radiotherapy: From radiobiological rationale to therapeutic gain

  • Loredana G. Marcu
    Correspondence
    Address: University of Oradea, Faculty of Science, 1 Universitatii Str., Oradea, Romania. Tel.: +40 730 669502; fax: +40 259 408461.
    Affiliations
    University of Oradea, Faculty of Science, Romania
    University of Adelaide, School of Chemistry and Physics, SA, Australia
    Search for articles by this author

      Summary

      The implementation of altered fractionation schedules in clinical practice came as a need to improve loco-regional control and survival in those cancer patient groups which did not respond satisfactorily to conventionally fractionated radiotherapy. The current review aims to present the radiobiological rationale behind various non-conventional treatment schedules including the encountered challenges, through a compilation of clinical studies/trials and their contribution towards therapeutic gain.

      Keywords

      To read this article in full you will need to make a payment
      ESMO Member Login
      Login with your ESMO username and password.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Thames HD, Hendry JH. Fractionation in radiotherapy. Taylor and Francis; 1987.

        • Withers H.R.
        The four R’s of radiotherapy.
        Adv Radiat Biol. 1975; 5: 241-247
        • Steel G.G.
        • Mc Millan T.J.
        • Peacock J.H.
        The 5 Rs of radiobiology.
        Int J Radiat Biol. 1989; 56: 1054-1058
      2. Steel GG. Basic clinical radiobiology. 3rd ed. Arnold; 2002.

        • Duchesne G.M.
        • Peters L.J.
        What is the alpha/beta ratio for prostate cancer? Rationale for hypofractionated high-dose-rate brachytherapy [editorial].
        Int J Radiat Oncol Biol Phys. 1999; 44: 747-748
        • Rew D.A.
        • Wilson G.D.
        Cell production rates in human tissues and tumours and their significance. Part II: clinical data.
        Eur J Surg Oncol. 2000; 26: 405-417
        • Haustermans K.M.
        • Hofland I.
        • Van Poppel H.
        • et al.
        Cell kinetic measurements in prostate cancer.
        Int J Radiat Oncol Biol Phys. 1997; 37: 1067-1070
        • Lee W.R.
        • Hanks G.E.
        • Corn B.W.
        • Schultheiss T.E.
        Observations of pretreatment prostate-specific antigen doubling time in 107 patients referred for definitive radiotherapy.
        Int J Radiat Oncol Biol Phys. 1995; 31: 21-24
        • Hlatky L.
        • Olesiak M.
        • Hahnfeldt P.
        Measurement of potential doubling time for human tumor xenografts using the cytokinesis-block method.
        Cancer Res. 1996; 56: 1660-1663
        • Nakajima M.
        • Nakasu S.
        • Morikawa S.
        • Inubushi T.
        Estimation of volume doubling time and cell loss in an experimental rat glioma model in vivo.
        Acta Neurochir (Wien). 1998; 140: 607-612
        • Spratt J.S.
        • Meyer J.S.
        • Spratt J.A.
        Rates of growth of human neoplasms: part II.
        J Surg Oncol. 1996; 61: 68-83
        • Peer P.G.
        • van Dijck J.A.
        • Hendriks J.H.
        • et al.
        Age-dependent growth rate of primary breast cancer.
        Cancer. 1993; 71: 3547-3551
        • Shimomatsuya T.
        • Tanigawa N.
        • Muraoka R.
        Proliferative activity of human tumors: assessment using bromodeoxyuridine and flow cytometry.
        Jpn J Cancer Res. 1991; 82: 357-362
        • Shibamoto Y.
        • Ike O.
        • Mizuno H.
        • et al.
        Proliferative activity and micronucleus frequency after radiation of lung cancer cells as assessed by the cytokinesis-block method and their relationship to clinical outcome.
        Clin Cancer Res. 1998; 4: 677-682
        • El Sharouni S.Y.
        • Kal H.B.
        • Battermann J.J.
        Accelerated regrowth of non-small-cell lung tumours after induction chemotherapy.
        Br J Cancer. 2003; 89: 2184-2189
        • Arai T.
        • Kuroishi T.
        • Saito Y.
        • et al.
        Tumor doubling time and prognosis in lung cancer patients: evaluation from chest films and clinical follow-up study.
        Jpn J Clin Oncol. 1994; 24: 199-204
        • Lindell R.
        • Hartman T.
        • Swensen S.
        • et al.
        Five-year lung cancer screening experience. ct appearance, growth rate, location, and histologic features of 61 lung cancers.
        Radiology. 2007; 242: 555-562
        • Peters L.J.
        • Ang K.K.
        • Thames H.D.
        Accelerated fractionation in the radiation treatment of head and neck cancer.
        Acta Oncol. 1988; 27: 185-194
        • Dische S.
        • Saunders M.
        • Harvey A.
        A randomised multicentre trial of CHART versus conventional radiotherapy in head and neck cancer.
        Radiother Oncol. 1997; 44: 123-136
        • Poulsen M.G.
        • Denham J.W.
        • Peters L.J.
        • et al.
        A randomized trial of accelerated and conventional radiotherapy for stage III and IV squamous carcinoma of the head and neck: a trans-Tasman radiation oncology group study.
        Radiother Oncol. 2001; 60: 113-122
        • Corry J.
        • Rischin D.
        Strategies to overcome accelerated repopulation and hypoxia – what have we learnt from clinical trials?.
        Sem Oncol. 2004; 9: 802-808
        • Overgaard J.
        • Hansen H.S.
        • Specht L.
        • et al.
        Five compared with six fractions per week of conventional radiotherapy of squamous cell carcinoma of head and neck: DAHANCA 6 and 7 randomised controlled trial.
        Lancet. 2003; 362: 933-940
        • Fu K.K.
        • Pajak T.
        • Trotti A.
        • et al.
        Radiation Therapy Oncology Group (RTOG) phase III randomized study to compare hyperfractionation and two variants of accelerated fractionation to standard fractionation radiotherapy for head and neck squamous cell carcinomas: first report of RTOG 9003.
        Int J Radiat Oncol Biol Phys. 2000; 48: 7-16
        • Skladowski K.
        • Maciejewski B.
        • Golen M.
        • et al.
        Randomized clinical trial on 7-day-continuous accelerated irradiation (CAIR) of head and neck cancer – report on 3-year tumour control and normal tissue toxicity.
        Radiother Oncol. 2000; 55: 101-110
        • Horiot J.C.
        • Bontemps P.
        • van der Bogaert W.
        • et al.
        Accelerated fractionation compared to conventional fractionation improves loco-regional control in the radiotherapy of advanced head and neck cancers: results of the EORTC 22851 randomized trial.
        Radiother Oncol. 1997; 44: 111-121
        • Bourhis J.
        • Overgaard J.
        • Audry H.
        • et al.
        Hyperfractionated or accelerated radiotherapy in head and neck cancer: a meta-analysis.
        Lancet. 2006; 368: 843-854
        • Bourhis J.
        • Le Maître A.
        • Pignon J.
        • MACH-NC, MARCH groups
        Impact of age on treatment effect in locally advanced head, neck cancer (HNC): two individual patient data meta-analyses [abstract].
        Proc Am Soc Clin Oncol. 2006; 24: 280s
        • Bourhis J.
        • Le Maître A.
        • Baujat B.
        • et al.
        Individual patients’ data meta-analyses in head and neck cancer.
        Curr Opin Oncol. 2007; 19: 188-194
        • Nguyen L.
        • Ang K.
        Radiotherapy for cancer of the head and neck: altered fractionation regimens.
        Lancet Oncol. 2002; 3: 693-701
        • Budach W.
        • Hehr T.
        • Budach V.
        • et al.
        A meta-analysis of hyperfractionated, accelerated radiotherapy, combined chemotherapy, radiotherapy regimens in unresected locally advanced squamous cell carcinoma of the head, neck.
        BMC Cancer. 2006; 6: 28
        • Jeremic B.
        • Shibamoto Y.
        • Milicic B.
        • et al.
        Hyperfractionated radiation therapy with or without concurrent low-dose daily cisplatin in locally advanced squamous cell carcinoma of the head and neck: a prospective randomized trial.
        J Clin Oncol. 2000; 18: 1458-1464
        • Brenner D.J.
        • Hall E.J.
        Fractionation and protraction for radiotherapy of prostate carcinoma.
        Int J Radiat Oncol Biol Phys. 1999; 43: 1095-1101
        • Fowler J.
        • Chappell R.
        • Ritter M.
        Is α/β for prostate tumors really low?.
        Int J Radiat Oncol Biol Phys. 2001; 50: 1021-1031
        • Livsey J.
        • Cowan R.
        • Wylie J.
        • et al.
        Hypofractionated conformal radiotherapy in carcinoma of the prostate: five-year outcome analysis.
        Int J Radiat Oncol Biol Phys. 2003; 57: 1254-1259
      3. Arcangeli G, Saracino B, Gomellini S, et al. A prospective phase III randomized trial of hypofractionation versus conventional fractionation in patients with high-risk prostate cancer. Int J Radiat Oncol Biol Phys 2010;Jan 2 [Epub ahead of print].

        • Norkus D.
        • Miller A.
        • Kurtinaitis J.
        • et al.
        A randomized trial comparing hypofractionated and conventionally fractionated three-dimensional external-beam radiotherapy for localized prostate adenocarcinoma: a report on acute toxicity.
        Strahlenther Onkol. 2009; 185: 715-721
        • Pollak A.
        • Hanlon A.
        • Horwitz E.
        • et al.
        Dosimetry and preliminary acute toxicity in the first 100 men treated for prostate cancer on a randomized hypofractionation dose escalation trial.
        Int J Radiat Oncol Biol Phys. 2006; 64: 518-526
        • Yeoh E.
        • Holloway R.
        • Fraser R.
        • et al.
        Hypofractionated versus conventionally fractionated radiation therapy for prostate carcinoma: updated results of a phase III randomized trial.
        Int J Radiat Oncol Biol Phys. 2006; 66: 1072-1083
        • Lukka H.
        • Hayter C.
        • Julian J.A.
        • et al.
        Randomized trial comparing two fractionation schedules for patients with localized prostate cancer.
        J Clin Oncol. 2005; 23: 6132-6138
        • Marzi S.
        • Saracino B.
        • Petrongari M.G.
        • et al.
        Modeling of alpha/beta for late rectal toxicity from a randomized phase II study: conventional versus hypofractionated scheme for localized prostate cancer.
        J Exp Clin Cancer Res. 2009; 28: 117
        • Brenner D.J.
        Fractionation and late rectal toxicity.
        Int J Radiat Oncol Biol Phys. 2004; 60: 1013-1015
        • Wang J.Z.
        • Li X.A.
        • Yu C.X.
        • DiBiase S.J.
        The low alpha/beta ratio for prostate cancer: what does the clinical outcome of HDR brachytherapy tell us?.
        Int J Radiat Oncol Biol Phys. 2003; 57: 1101-1108
        • Brenner D.J.
        • Martinez A.A.
        • Edmundson G.K.
        • et al.
        Direct evidence that prostate tumors show high sensitivity to fractionation (low alpha/beta ratio), similar to late-responding normal tissue.
        Int J Radiat Oncol Biol Phys. 2002; 52: 6-13
        • Deore S.M.
        • Shrivastava S.K.
        • Supe S.J.
        • et al.
        Alpha/beta value and importance of dose per fraction for the late rectal and recto-sigmoid complications.
        Strahlenther Onkol. 1993; 169: 521-526
        • Dogan N.
        • King S.
        • Emami B.
        • et al.
        Assessment of different IMRT boost delivery methods on target coverage and normal-tissue sparing.
        Int J Radiat Oncol Biol Phys. 2003; 57: 1480-1491
        • Pervez N.
        • Small C.
        • MacKenzie M.
        • et al.
        Acute toxicity in high-risk prostate cancer patients treated with androgen suppression and hypofractionated intensity-modulated radiotherapy.
        Int J Radiat Oncol Biol Phys. 2010; 76: 57-64
        • Coote J.H.
        • Wylie J.P.
        • Cowan R.A.
        • et al.
        Hypofractionated intensity-modulated radiotherapy for carcinoma of the prostate: analysis of toxicity.
        Int J Radiat Oncol Biol Phys. 2009; 74: 1121-1127
        • McCammon R.
        • Rusthoven K.E.
        • Kavanagh B.
        • et al.
        Toxicity assessment of pelvic intensity-modulated radiotherapy with hypofractionated simultaneous integrated boost to prostate for intermediate- and high-risk prostate cancer.
        Int J Radiat Oncol Biol Phys. 2009; 75: 413-420
        • Fonteyne V.
        • De Gersem W.
        • De Neve W.
        • et al.
        Hypofractionated intensity-modulated arc therapy for lymph node metastasized prostate cancer.
        Int J Radiat Oncol Biol Phys. 2009; 75: 1013-1020
        • Ritter M.
        • Forman J.
        • Kupelian P.
        • et al.
        Hypofractionation for prostate cancer.
        Cancer J. 2009; 15: 1-6
        • Nieder C.
        • Andratschke N.
        • Wiedenmann N.
        • et al.
        Radiotherapy for high-grade gliomas. Does altered fractionation improve the outcome?.
        Strahlenther Onkol. 2004; 180: 401-407
        • Lang O.
        • Liebermeister E.
        • Liesegang J.
        • Sautter-Bihl M.
        Radiotherapy of glioblastoma multiforme. Feasibility of increased fraction size and shortened overall treatment.
        Strahlenther Onkol. 1998; 174: 629-632
        • Sultanem K.
        • Patrocinio H.
        • Lambert C.
        • et al.
        The use of hypofractionated intensity-modulated irradiation in the treatment of glioblastoma multiforme: preliminary results of a prospective trial.
        Int J Radiat Oncol Biol Phys. 2004; 58: 247-252
        • Floyd N.S.
        • Woo S.Y.
        • Teh B.S.
        • et al.
        Hypofractionated intensity-modulated radiotherapy for primary glioblastoma multiforme.
        Int J Radiat Oncol Biol Phys. 2004; 58: 721-726
        • Owen J.R.
        • Ashton A.
        • Bliss J.M.
        • et al.
        Effect of radiotherapy fraction size on tumour control in patients with early-stage breast cancer after local tumour excision: long-term results of a randomised trial.
        Lancet Oncol. 2006; 7: 467-471
        • Yarnold J.
        • Ashton A.
        • Bliss J.
        • et al.
        Fractionation sensitivity and dose response of late adverse effects in the breast after radiotherapy for early breast cancer: long-term results of a randomised trial.
        Radiother Oncol. 2005; 75: 9-17
      4. START Trialists’ Group, Bentzen SM, Agrawal RK, Aird EG, et al. The UK standardisation of breast radiotherapy (START) trial a of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. Lancet Oncol 2008;9(4):331–41.

        • Polgar C.
        • Fodor J.
        • Major T.
        • et al.
        Breast-conserving treatment with partial or whole breast irradiation for low-risk invasive breast carcinoma-5-year results of a randomized trial.
        Int J Radiat Oncol Biol Phys. 2007; 69: 694-702
      5. Whelan TJ, Pignol JP, Levine MN, et al. Long-term results of hypofractionated radiation therapy for breast cancer. N Engl J Med 2010; 362(6):513–20.

        • Guerrero M.
        • Li X.A.
        • Earl M.A.
        • et al.
        Simultaneous integrated boost for breast cancer using IMRT: a radiobiological and treatment planning study.
        Int J Radiat Oncol Biol Phys. 2004; 59: 1513-1522
        • Hurkmans C.W.
        • Meijer G.J.
        • van Vliet-Vroegindeweij C.
        • et al.
        High-dose simultaneously integrated breast boost using intensity-modulated radiotherapy and inverse optimization.
        Int J Radiat Oncol Biol Phys. 2006; 66: 923-930
      6. Bartelink H, Boersma LJ, Leer JW, Poortmans P. Radiation dose intensity study in breast cancer in young women: a randomized phase III trial of additional dose to the tumor bed. 6-8-2004. Boog 2004-1, CKTO 2003–13.

        • van der Laan H.P.
        • Dolsma W.V.
        • Maduro J.H.
        • et al.
        Three-dimensional conformal simultaneously integrated boost technique for breast-conserving radiotherapy.
        Int J Radiat Oncol Biol Phys. 2007; 68: 1018-1023
        • Graham P.
        • Fourquet A.
        Placing the boost in breast-conservation radiotherapy: a review of the role, indications and techniques for breast-boost radiotherapy.
        Clin Oncol (R Coll Radiol). 2006; 18: 210-219
        • Hijal T.
        • Fournier-Bidoz N.
        • Castro-Pena P.
        • et al.
        Simultaneous integrated boost in breast conserving treatment of breast cancer: a dosimetric comparison of helical tomotherapy and three-dimensional conformal radiotherapy.
        Radiother Oncol. 2010; 94: 300-306
      7. NSABP B-39, RTOG 0413: a randomized phase III study of conventional whole breast irradiation versus partial breast irradiation for women with stage 0, I or II breast cancer. Clin Adv Hematol Oncol 2006;4:719–21.

        • Budrukkar A.
        Accelerated partial breast irradiation: an advanced form of hypofractionation.
        J Cancer Res Ther. 2008; 4: 46-47
        • Usuda K.
        • Saito Y.
        • Sagawa M.
        • et al.
        Tumor doubling time and prognostic assessment of patients with primary lung cancer.
        Cancer. 1994; 74: 2239-2244
      8. Tinnemans MM, Lenders MH, ten Velde GP, et al. Prognostic value of cytokinetic parameters in lung cancer after in vivo bromodeoxyuridine labelling. Anticancer Res 1999;19(1A):531–4.

        • Hasegawa M.
        • Sone S.
        • Takashima S.
        • et al.
        Growth rate of small lung cancers detected on mass CT screening.
        Br J Radiol. 2000; 73: 1252-1259
        • Saunders M.
        • Dische S.
        • Barrett A.
        • et al.
        • CHART Steering Committee
        Continuous hyperfractionated accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small-cell lung cancer: a randomised multicentre trial.
        Lancet. 1997; 350: 161-165
        • Fowler J.F.
        • Chappell R.
        Non-small cell lung tumors repopulate rapidly during radiation therapy.
        Int J Radiat Oncol Biol Phys. 2000; 46: 516-517
        • Fu X.L.
        • Jiang G.L.
        • Wang L.J.
        • et al.
        Hyperfractionated accelerated radiation therapy for non-small cell lung cancer: clinical phase I/II trial.
        Int J Radiat Oncol Biol Phys. 1997; 39: 545-552
        • Saunders M.I.
        • Rojas A.
        • Lyn B.E.
        • et al.
        Experience with dose escalation using CHARTWEL (continuous hyperfractionated accelerated radiotherapy weekend less) in non-small-cell lung cancer.
        Br J Cancer. 1998; 78: 1323-1328
        • Saunders M.
        • Dische S.
        • Barrett A.
        • et al.
        • CHART Steering Committee
        Continuous, hyperfractionated, accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small cell lung cancer: mature data from the randomised multicentre trial.
        Radiother Oncol. 1999; 52: 137-148
        • Din O.S.
        • Lester J.
        • Cameron A.
        • et al.
        Routine use of continuous, hyperfractionated, accelerated radiotherapy for non-small-cell lung cancer: a five-center experience.
        Int J Radiat Oncol Biol Phys. 2008; 72: 716-722
        • Pemberton L.S.
        • Din O.S.
        • Fisher P.M.
        • Hatton M.Q.
        Accelerated radical radiotherapy for non-small cell lung cancer using two common regimens: a single-centre retrospective study of outcome.
        Clin Oncol (R Coll Radiol). 2009; 21: 161-167
        • De Ruysscher D.
        • Wanders R.
        • van Haren E.
        • et al.
        HI-CHART: a phase I/II study on the feasibility of high-dose continuous hyperfractionated accelerated radiotherapy in patients with inoperable non-small-cell lung cancer.
        J Radiat Oncol Biol Phys. 2008; 71: 132-138
        • Bentzen S.
        • Saunders M.
        • Dische S.
        From CHART to CHARTWEL in non-small cell lung cancer: clinical radiobiological modelling of the expected change in outcome.
        Clin Oncol (R Coll Radiol). 2002; 14: 372-381
        • Saunders M.I.
        • Rojas A.
        • Lyn B.E.
        • et al.
        Dose-escalation with CHARTWEL (continuous hyperfractionated accelerated radiotherapy week-end less) combined with neo-adjuvant chemotherapy in the treatment of locally advanced non-small cell lung cancer.
        Clin Oncol (R Coll Radiol). 2002; 14: 352-360
        • Rojas A.M.
        • Lyn B.E.
        • Wilson E.M.
        • et al.
        Toxicity and outcome of a phase II trial of taxane-based neoadjuvant chemotherapy and 3-dimensional, conformal, accelerated radiotherapy in locally advanced nonsmall cell lung cancer.
        Cancer. 2006; 107: 1321-1330
        • Bonomi M.
        • Blanco-Savorio A.
        • Cerchietti L.
        • et al.
        Continuous hyperfractionated accelerated radiation therapy week-end less in combination with neoadjuvant chemotherapy for the treatment of stage III non-small-cell lung cancer.
        Lung cancer. 2008; 60: 75-82
        • Zwitter M.
        • Kovac V.
        • Smrdel U.
        • Strojan P.
        Gemcitabine, cisplatin, and hyperfractionated accelerated radiotherapy for locally advanced non-small cell lung cancer.
        J Thorac Oncol. 2006; 1: 662-666