Advertisement

Resveratrol in the chemoprevention and treatment of hepatocellular carcinoma

Published:November 12, 2009DOI:https://doi.org/10.1016/j.ctrv.2009.10.002

      Summary

      Hepatocellular carcinoma (HCC) is one of the most common cancers and lethal diseases in the world. Although the majority of HCC cases occur in developing countries of Asia and Africa, the prevalence of liver cancer has risen considerably in Japan, Western Europe as well as the United States. HCC most commonly develops in patients with chronic liver disease, the etiology of which includes viral hepatitis (B and C), alcohol, obesity, iron overload and dietary carcinogens, including aflatoxins and nitrosamines. The current treatment modalities, including surgical resection and liver transplantation, have been found to be mostly ineffective. Hence, there is an obvious critical need to develop alternative strategies for the chemoprevention and treatment of HCC. Oxidative stress as well as inflammation has been implicated in the development and progression of hepatic neoplasia. Using naturally occurring phytochemicals and dietary compounds endowed with potent antioxidant and antiinflammatory properties is a novel approach to prevent and control HCC. One such compound, resveratrol, present in grapes, berries, peanuts as well as red wine, has emerged as a promising molecule that inhibits carcinogenesis with a pleiotropic mode of action. This review examines the current knowledge on mechanism-based in vitro and in vivo studies on the chemopreventive and chemotherapeutic potential of resveratrol in liver cancer. Pre-clinical and clinical toxicity studies as well as pharmacokinetic data of resveratrol have also been highlighted in this review. Future directions and challenges involved in the use of resveratrol for the prevention and treatment of HCC are also discussed.

      Keywords

      To read this article in full you will need to make a payment
      ESMO Member Login
      Login with your ESMO username and password.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Parkin D.M.
        • Bray F.
        • Ferlay J.
        • Pisani P.
        Global cancer statistics, 2002.
        CA Cancer J Clin. 2005; 55: 74-108
        • Sherman M.
        Hepatocellular carcinoma: epidemiology, risk factors, and screening.
        Semin Liver Dis. 2005; 25: 143-154
        • El-Serag H.B.
        Hepatocellular carcinoma: recent trends in the United States.
        Gastroenterology. 2004; 127: S27-S34
        • Jemal A.
        • Siegel R.
        • Ward E.
        • Hao Y.
        • Xu J.
        • Thun M.J.
        Cancer statistics, 2009.
        CA Cancer J Clin. 2009; 59: 225-249
        • Okuda K.
        Hepatocellular carcinoma.
        J Hepatol. 2000; 32: 225-237
        • Bartsch H.
        • Montesano R.
        Relevance of nitrosamines to human cancer.
        Carcinogenesis. 1984; 5: 1381-1393
        • Kensler T.W.
        • Egner P.A.
        • Wang J.B.
        • et al.
        Chemoprevention of hepatocellular carcinoma in aflatoxin endemic areas.
        Gastroenterology. 2004; 127: S310-S318
        • Pang R.
        • Tse E.
        • Poon T.P.
        Molecular pathways in hepatocellular carcinoma.
        Cancer Lett. 2006; 240: 157-169
        • Ribes J.
        • Clèries R.
        • Esteban L.
        • Moreno V.
        • Bosch F.X.
        The influence of alcohol consumption and hepatitis B and C infections on the risk of liver cancer in Europe.
        J Hepatol. 2008; 49: 233-242
        • Llovet J.M.
        • Burroughs A.
        • Bruix J.
        Hepatocellular carcinoma.
        Lancet. 2003; 362: 1907-1917
        • Llovet J.M.
        • Ricci S.
        • Mazzaferro V.
        • et al.
        Sorafenib in advanced hepatocellular carcinoma.
        N Eng J Med. 2008; 359: 378-390
        • Je Y.
        • Schutz F.A.B.
        • Choueiri T.K.
        Risk of bleeding with vascular endothelial growth factor receptor tyrosine-kinase inhibitors sunitinib and sorafenib: a systematic review and mata-analysis of clinical trials.
        Lancet Oncol. 2009; 10: 967-974
        • Okuno M.
        • Kojima S.
        • Moriwaki H.
        Chemoprevention of hepatocellular carcinoma: concept, progress and perspectives.
        J Gastroenterol Hepatol. 2001; 16: 1329-1335
        • Kensler T.W.
        • Quian G.S.
        • Chen J.G.
        • Groopman J.D.
        Translational strategies for cancer prevention in liver.
        J Natl Cancer Inst. 2003; 3: 321-329
        • Prieto J.
        Inflammation, HCC and sex: IL-6 in the centre of the triangle.
        J Hepatol. 2008; 48: 380-381
        • Mantovani A.
        • Allavena P.
        • Sica A.
        • Balkwill F.
        Cancer-related inflammation.
        Nature. 2008; 454: 436-444
        • Berasain C.
        • Casillo J.
        • Perugorria M.J.
        • Latasa M.U.
        • Prieto J.
        • Avila M.A.
        Inflammation and liver cancer: new molecular links.
        Ann N Y Acad Sci. 2009; 1155: 206-221
        • Laurent-Puig P.
        • Zucman-Rossi J.
        Genetics of hepatocellular tumors.
        Oncogene. 2006; 25: 3778-3786
        • Kawanishi S.
        • Hiraku Y.
        • Pinlaor S.
        • Ma N.
        Oxidative stress and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis.
        Biol Chem. 2006; 387: 365-372
        • Elsharkawy A.M.
        • Mann D.A.
        Nuclear factor-(B and the hepatic inflammation–fibrosis–cancer axis.
        Hepatology. 2007; 46: 590-597
        • Karin M.
        The I(B kinase – a bridge between inflammation and cancer.
        Cell Res. 2008; 18: 334-342
        • Muriel P.
        NF-(B in liver diseases: a target for drug therapy.
        J Appl Toxicol. 2009; 29: 91-100
        • Gius D.
        • Spitz D.R.
        Redox signaling in cancer biology.
        Antioxid Redox Signal. 2006; 8: 1249-1252
        • Klaunig J.E.
        • Kamendulis L.M.
        The oxidative stress in carcinogenesis.
        Annu Rev Pharmacol Toxicol. 2004; 44: 239-267
      1. World Cancer Research Fund/American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington, DC: AICR; 2007.

        • Khan N.
        • Afaq F.
        • Mukhtar H.
        Cancer chemoprevention through dietary antioxidants: progress and promise.
        Antioxid Redox Signal. 2008; 10: 475-510
        • Ullah M.F.
        • Khan M.W.
        Food as medicine: potential therapeutic tendencies of plant derived polyphenolic compounds.
        Asian Pac J Cancer Prev. 2008; 9: 187-196
        • Ramos S.
        Cancer chemoprevention and chemotherapy: dietary polyphenols and signaling pathways.
        Mol Nutr Food Res. 2008; 52: 507-526
        • Korkina L.G.
        • De Luca C.
        • Kostyuk V.A.
        • Pastore S.
        Plant polyphenols and tumors: from mechanisms to therapies, prevention, and protection against toxicity of anti-cancer treatments.
        Curr Med Chem. 2009; 16: 3943-3965
        • Rahman I.
        • Biswas S.K.
        • Kirkham P.A.
        Regulation of inflammation and redox signaling by dietary polyphenols.
        Biochem Pharmacol. 2005; 72: 1439-1452
        • Kim Y.S.
        • Young M.R.
        • Bobe G.
        • Colbum N.H.
        • Milner J.A.
        Bioactive food components, inflammatory targets, and cancer prevention.
        Cancer Prev Res. 2009; 2: 200-208
        • Mann C.D.
        • Neal C.P.
        • Garcea G.
        • Manson M.M.
        • Dennison A.R.
        • Berry D.P.
        Phytochemicals as potential chemopreventive and chemotherapeutic agents in hepatocarcinogenesis.
        Eur J Cancer Prev. 2009; 18: 13-25
        • Harikumar K.B.
        • Aggarwal B.B.
        Resveratrol: a multitargeted agent for age-associated chronic diseases.
        Cell Cycle. 2008; 7: 1020-1037
        • Baur J.A.
        • Sinclair D.A.
        Therapeutic potential of resveratrol: the in vivo evidence.
        Nat Rev Drug Discov. 2006; 5: 493-506
        • Shankar S.
        • Singh G.
        • Srivastava R.K.
        Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential.
        Front Biosci. 2007; 12: 4839-4854
        • Shakibaei M.
        • Harikumar K.B.
        • Aggarwal B.B.
        Resveratrol addiction: to die or not to die.
        Mol Nutr Food Res. 2009; 53: 115-128
        • Vidavalur R.
        • Otani H.
        • Singal P.K.
        • Maulik N.
        Significance of wine and resveratrol in cardiovascular disease: French paradox revisited.
        Exp Clin Cardiol. 2006; 11: 217-225
        • Presta M.A.
        • Bruyneel B.
        • Zanella R.
        • Kool J.
        • Krabbe J.G.
        • Lingeman H.
        Determination of flavonoids and resveratrol in wine by turbulent-flow chromatography–LC–MS.
        Chromatographia. 2009; 69: 167-173
        • Saiko P.
        • Szakmary A.
        • Jaeger W.
        • Szekeres T.
        Resveratrol and its analogs: defense against cancer, coronary disease and neurodegenerative maladies or just a fad?.
        Mutat Res. 2008; 658: 68-94
        • Udenigwe C.
        • Ramprasath V.R.
        • Aluko R.E.
        • Jones P.J.H.
        Potential of resveratrol in anticancer and anti-inflammatory therapy.
        Nutr Rev. 2008; 66: 445-454
        • Pirola L.
        • Fröjdö S.
        Resveratrol: one molecule, many targets.
        IUBMB Life. 2008; 60: 323-332
        • Athar M.
        • Back J.H.
        • Kopelovich L.
        • Bickers D.R.
        • Kim A.L.
        Multiple molecular targets of resveratrol: anti-carcinogenic mechanisms.
        Arch Biochem Biophys. 2009; 486: 95-102
        • Jang M.
        • Cai L.
        • Udeani G.O.
        • et al.
        Cancer chemopreventive activity of resveratrol, a natural product derived from grapes.
        Science. 1997; 275: 218-220
        • Aggarwal B.B.
        • Bhardwaj A.
        • Aggarwal R.S.
        • Seeram N.P.
        • Shishodia S.
        • Takada Y.
        Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies.
        Anticancer Res. 2004; 24: 2783-2840
        • Howells L.M.
        • Moiseeva E.P.
        • Neal C.P.
        • et al.
        Predicting the physiological relevance of in vitro cancer preventive activities of phytochemicals.
        Acta Pharmacol Sin. 2007; 28: 1274-1304
        • Kundu J.K.
        • Surh Y.-J.
        Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives.
        Cancer Lett. 2008; 269: 243-261
        • Pezzuto J.M.
        Resveratrol as an inhibitor of carcinogenesis.
        Pharm Biol. 2008; 46: 443-573
        • Bishayee A.
        Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials.
        Cancer Prev Res. 2009; 2: 409-418
        • Bertelli A.A.
        • Giovanni L.
        • Stradi R.
        • Urisen S.
        • Tillement J.P.
        • Bertelli A.
        Evaluation of kinetic parameters of natural phytoalexin in resveratrol orally administered in wine to rats.
        Drug Expt Clin Res. 1998; 24: 51-55
        • Vitrac X.
        • Desmoulière A.
        • Brouillaud B.
        • et al.
        Distribution of [14C]-trans-resveratrol, a cancer chemopreventive polyphenol, in mouse tissues after oral administration.
        Life Sci. 2003; 72: 2219-2233
        • Gester S.
        • Wuest F.
        • Pawelke B.
        • Bergmann R.
        • Pietzsch J.
        Synthesis and biodistribution of an18 F-labelled resveratrol derivative for small animal positron emission tomography.
        Amino Acids. 2005; 29: 415-428
        • Abd El-Mohsen M.
        • Bayele H.
        • Kuhnle G.
        • et al.
        Distribution of [3H]trans-resveratrol in rat tissues following oral administration.
        Brit J Nutr. 2006; 96: 62-70
        • Ciolino H.P.
        • Daschner P.J.
        • Yeh G.C.
        Resveratrol inhibits transcription of CYP1A1 in vitro by preventing activation of the aryl hydrocarbon receptor.
        Cancer Res. 1998; 58: 5707-5712
        • Chun Y.J.
        • Kim M.Y.
        • Guengerich F.P.
        Resveratrol is a selective human cytochrome P450 1A1 inhibitor.
        Biochem Biophys Res Commun. 1999; 262: 20-24
        • Hebbar V.
        • Shen G.
        • Hu R.
        • et al.
        Toxicogenomics of resveratrol in rat liver.
        Life Sci. 2005; 76: 2299-2314
        • Canistro D.
        • Bonamassa B.
        • Pozzetti L.
        • et al.
        Alteration of xenobiotic metabolizing enzymes by resveratrol in liver and lung of CD1 mice.
        Food Chem Toxicol. 2009; 47: 454-561
        • Das S.
        • Das D.K.
        Anti-inflammatory responses of resveratrol.
        Inflammation Allergy Drug Target. 2007; 6: 168-173
        • Rubiolo J.A.
        • Mithieux G.
        • Vega F.V.
        Resveratrol protects primary rat hepatocytes against oxidative stress damage: activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes.
        Eur J Pharmacol. 2008; 591: 66-72
        • Delmas D.
        • Jannin B.
        • Malki M.C.
        • Latruffe N.
        Inhibitor effect of resveratrol on the proliferation of human and rat hepatic derived cell lines.
        Oncol Rep. 2000; 7: 847-852
        • DeLėdinghen V.
        • Monovoisin A.
        • Neaud V.
        • et al.
        Trans-resveratrol, a grapevine-derived polyphenol, blocks hepatocyte growth factor-induced invasion of hepatocellular carcinoma cells.
        Int J Oncol. 2001; 19: 83-88
        • Kozuki Y.
        • Miura Y.
        • Yagasaki K.
        Resveratrol suppresses hepatoma cell invasion independently of its anti-proliferative action.
        Cancer Lett. 2001; 167: 151-156
        • Miura D.
        • Miura Y.
        • Yagasaki K.
        Resveratrol inhibits hepatoma cell invasion by suppressing gene expression on hepatocyte growth factor via its reactive oxygen species-scavenging property.
        Clin Exp Metas. 2004; 25: 445-451
        • Zhang Q.
        • Tang X.
        • Oing Y.L.
        • Zhang Z.F.
        • Brown J.
        • Le A.D.
        Resveratrol inhibits hypoxia-induced accumulation of hypoxia-inducible factor-1α and VEGF expression in human tongue squamous cell carcinoma and hepatoma cells.
        Mol Cancer Ther. 2005; 10: 1465-1474
        • Kuo P.
        • Chiang L.
        • Lin C.
        Resveratrol-induced apoptosis is mediated by p53-dependent pathway in Hep G2 cells.
        Life Sci. 2002; 72: 23-34
        • Kim H.J.
        • Chang E.J.
        • Bae S.J.
        • et al.
        Cytotoxic and antimutagenic stilbenes from seeds of Paeonia lactiflora.
        Arch Pharm Res. 2002; 3: 293-299
        • Kocsis Z.
        • Marcsek Z.L.
        • Jakab M.G.
        • Szende B.
        • Tompa A.
        Chemopreventive properties of trans-resveratrol against the cytotoxicity of chloroacetanilide herbicides in vitro.
        Int J Hyg Environ Health. 2005; 208: 211-218
        • Sun Z.
        • Pan C.
        • Liu H.
        • Wang G.
        Anti-hepatoma activity of resveratrol in vitro.
        World J Gastroenterol. 2002; 8: 79-81
        • Michels G.
        • Wätjen W.
        • Weber N.
        • et al.
        Resveratrol induces apoptotic cell death in rat H4IIE hepatoma cells but necrosis in C6 glioma cells.
        Toxicology. 2006; 225: 173-182
        • Stervbo U.
        • Vang O.
        • Bonnesen C.
        Time- and concentration-dependent effects of resveratrol in HL-60 and HepG2 cells.
        Cell Prolif. 2006; 39: 479-493
        • Notas G.
        • Figli A.
        • Kampa M.
        • Vercauteren J.
        • Kouroumalis E.
        • Castanas E.
        Resveratrol exerts its antiproliferative effect on HepG2 hepatocellular carcinoma cells, by inducing cell cycle arrest, and NOS activation.
        Biochim Biophys Acta. 2006; 1760: 1657-1666
        • Yu H.
        • Pan C.
        • Zhao S.
        • Wang Z.
        • Zhang H.
        • Wu W.
        Resveratrol inhibits tumor necrosis factor-α-mediated matrix metalloproteinase-9 expression and invasion of human hepatocellular carcinoma cells.
        Biomed Pharmacother. 2008; 62: 366-372
        • Yerian L.M.
        • Anders R.A.
        • Tretiakova M.
        • Hart J.
        Caveolin and thrombospondin expression during hepatocellular carcinogenesis.
        Am J Surg Pathol. 2004; 28: 357-364
        • Yang H-l
        • Chen W-q
        • Cao X.
        • et al.
        Caveolin-I enhances resveratrol-mediated cytotoxicity and transport in a hepatocellular carcinoma model.
        J Transl Med. 2009; 7: 22
        • Colin D.
        • Lancon A.
        • Delmas D.
        • et al.
        Antiproliferative activities of resveratrol and related compounds in human hepatocyte derived HepG2 cells are associated with biochemical cell disturbance revealed by fluorescence analyses.
        Biochimie. 2008; 90: 1674-1684
        • Khan S.A.
        • Thomas C.H.
        • Davidson B.R.
        • Taylor-Robinson S.D.
        Cholangiocarcinoma.
        Lancet. 2005; 366: 1303-1314
        • Roncoroni L.
        • Elli L.
        • Dolfini E.
        • et al.
        Resveratrol inhibits cell growth in a human cholangiocarcinoma cell line.
        Liver Int. 2008; 28: 1426-1436
        • Carbó N.
        • Costelli P.
        • Baccino F.M.
        • López-Soriano F.J.
        • Argilés J.M.
        Resveratrol, a natural product present in wine, decreases tumour growth in a rat tumour model.
        Biochem Biophys Res Commun. 1999; 254: 739-743
        • Miura D.
        • Miura Y.
        • Yagasaki K.
        Hypolipidemic action of dietary resveratrol, a phytoalexin in grapes and red wine, in hepatoma-bearing rats.
        Life Sci. 2003; 73: 1393-1400
        • Liu H.-S.
        • Pan C.-E.
        • Yang W.
        • Liu X.-M.
        Antitumor and immunomodulatory activity of resveratrol on experimentally implanted tumor of H22 in Balb/c mice.
        World J Gastroenterol. 2003; 9: 1474-1476
        • Yu L.
        • Sun Z.-J.
        • Wu S.L.
        • Pan C.-E.
        Effect of resveratrol on cell cycle proteins in murine transplantable liver cancer.
        World J Gastroenterol. 2003; 9: 2341-2343
        • Wu S.-L.
        • Sun Z.-J.
        • Yu L.
        • Meng K.-W.
        • Qin X.-L.
        • Pan C.
        Effect of resveratrol and in combination with 5-FU on murine liver cancer.
        World J Gastroenterol. 2004; 10: 3048-3052
        • Kweon S.
        • Kim Y.
        • Choi H.
        Grape extracts suppress the formation of preneoplastic foci and activity of fatty acid synthase in rat liver.
        Exp Mol Med. 2003; 35: 371-378
        • Tharappel J.C.
        • Lehmler H.-J.
        • Srinivasan C.
        • Robertson L.W.
        • Spear B.T.
        • Glauert H.P.
        Effect of antioxidant phytochemicals on the hepatic tumor promoting activity of 3,3′,4,4′-tetrachlorobiphenyl (PCB-77).
        Food Chem Toxicol. 2008; 46: 3467-3474
        • Bishayee A.
        • Chatterjee M.
        Inhibitory effect of vanadium on rat liver carcinogenesis initiated with diethylnitrosamine and promoted with phenobarbital.
        Brit J Cancer. 1995; 71: 1214-1220
        • Bishayee A.
        • Roy S.
        • Chatterjee M.
        Characterization of selective induction and alteration of xenobiotic biotransforming enzymes by vanadium during diethylnitrosamine-induced chemical rat liver carcinogenesis.
        Oncol Res. 1999; 11: 41-53
        • Bishayee A.
        • Sarkar A.
        • Chatterjee M.
        Further evidence for chemopreventive potential of β-carotene against experimental hepatocarcinogenesis: diethylnitrosamine-initiated and phenobarbital promoted hepatocarcinogenesis is prevented more effectively by β-carotene than by retinoic acid.
        Nutr Cancer. 2000; 37: 89-98
        • Bishayee A.
        • Dhir N.
        Resveratrol-mediated chemoprevention of diethylnitrosamine-initiated hepatocarcinogenesis: inhibition of cell proliferation and induction of apoptosis.
        Chem Biol Interact. 2009; 179: 131-144
        • Tsujii M.
        • DuBois R.N.
        Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2.
        Cell. 1995; 83: 493-501
        • Khanduja K.L.
        • Bhardwai A.
        • Kaushik G.
        Resveratrol inhibits N-nitrodiethylamine-induced ornithine decarboxylase and cyclooxynegase in mice.
        J Nutr Sci Vitaminol. 2004; 50: 61-65
      2. Luther DL, Ohanyan V, Shamhart PE, et al. Chemopreventive doses of resveratrol do not affect cardiac function in a rodent model of hepatocellular carcinoma. Invest New Drugs, in press. doi:10.1007/S10637-009-9332-7.

        • Juan M.E.
        • Vinardell P.M.
        • Planas J.M.
        The daily oral administration of high doses of trans-resveratrol to rats for 28 days is not harmful.
        J Nutr. 2002; 132: 257-260
        • Crowell J.A.
        • Korytko P.J.
        • Morrissey R.L.
        • Booth T.D.
        • Levine B.S.
        Resveratrol-associated renal toxicity.
        Toxicol Sci. 2004; 82: 614-619
        • Horn T.L.
        • Cwik M.J.
        • Morrissey R.L.
        • et al.
        Ontogenicity evaluation of resveratrol in p53(±) (p53 knockout) mice.
        Food Chem Toxicol. 2007; 45: 55-63
        • Wong Y.T.
        • Gruber J.
        • Jenner A.M.
        • et al.
        Elevation of oxidative-damage biomarkers during aging in F2 hybrid mice: protection by chronic oral intake of resveratrol.
        Free Rad Biol Med. 2009; 46: 799-809
        • Williams L.D.
        • Burdock G.A.
        • Edwards J.A.
        • Beck M.
        • Bausch J.
        Safety studies conducted on high-purity trans-resveratrol in experimental animals.
        Food Chem Toxicol. 2009; 47: 2170-2182
        • Soleas G.J.
        • Yan J.
        • Goldberg D.M.
        Ultrasensitivity assay for the three polyphenols (catechin, quercetin and resveratrol) and their conjugates in biological fluids utilizing gas chromatography with mass selective detection.
        J Chromatogr B Analyt Technol Biomed Life Sci. 2001; 757: 161-172
        • Goldberg D.M.
        • Yan J.
        • Soleas G.J.
        Absorption of three wine-related polyphenols in three different matrices by healthy subjects.
        Clin Biochem. 2003; 36: 79-87
        • Walle T.
        • Hsieh F.
        • DeLegge M.H.
        • Oatis J.E.
        • Walle U.K.
        High absorption but very low bioavailability of oral resveratrol in humans.
        Drug Metab Disp. 2004; 32: 1377-1382
        • Meng X.
        • Maliaki P.
        • Lu H.
        • Lee M.-J.
        • Yang C.S.
        Urinary and plasma levels of resveratrol and quercetin in humans, mice, and rats after ingestion of pure compounds and grape juice.
        J Agric Food Chem. 2004; 52: 935-942
        • Boocock D.J.
        • Patel K.R.
        • Faust G.E.
        • et al.
        Quantitation of trans-resveratrol and detection of its metabolites in human plasma and urine by high performance liquid chromatography.
        J Chromatogr B Analyt Technol Biomed Life Sci. 2007; 848: 182-187
        • Boocock D.J.
        • Faust G.E.
        • Patel K.R.
        • et al.
        Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent.
        Cancer Epidemiol Biomarkers Prev. 2007; 16: 1246-1252
        • Vaz-da-Silva M.
        • Loureiro A.I.
        • Falcao A.
        • et al.
        Effect of food on the pharmacokinetic profile of trans-resveratrol.
        Int J Clin Pharmacol Ther. 2008; 46: 564-570
        • Almeida L.
        • Vaz-da-Silva M.
        • Falcão A.
        • et al.
        Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers.
        Mol Nutr Food Res. 2009; 53: S7-S15
        • Vitaglione P.
        • Sforza S.
        • Galaverna G.
        • et al.
        Bioavailability of trans-resveratrol from red wine in humans.
        Mol Nutr Food Res. 2005; 49: 495-504
        • Zamora-Ros R.
        • Urpí-Sardà M.
        • Lamuela-Raventós R.M.
        • et al.
        Diagnostic performance of urinary resveratrol metabolites as a biomarker of moderate wine consumption.
        Clin Chem. 2006; 52: 1373-1380
        • Burkon A.
        • Somoza V.
        Quantification of free and protein-bound trans-resveratrol metabolites and identification of trans-resveratrol-C/O-conjugated diglucuronides – two novel resveratrol metabolites in human plasma.
        Mol Nutr Food Res. 2008; 52: 549-557
        • Miksits M.
        • Maier-Salamon A.
        • Aust S.
        • et al.
        Sulfation of resveratrol in human liver: evidence of a major role for the sulfotransferases SULT 1A1 and SULT 1E1.
        Xenobiotica. 2005; 35: 1101-1119
        • Brill S.S.
        • Furimsky A.M.
        • Ho M.N.
        • et al.
        Glucuronidation of trans-resveratrol by human liver and intestinal microsomes and UGT isoforms.
        J Pharm Pharmacol. 2006; 58: 469-479
        • Gescher A.J.
        Resveratrol from red grapes – pedestrian polyphenol or useful anticancer agent?.
        Planta Med. 2009; 74: 1651-1655
        • Camont L.
        • Cottart C.H.
        • Rhayem Y.
        • et al.
        Simple spectrophotometric assessment of the trans-/cis-resveratrol ratio in aqueous solutions.
        Anal Chim Acta. 2009; 634: 121-128
        • Kundu J.K.
        • Surh Y.-J.
        Inflammation: gearing the journey to cancer.
        Mutat Res. 2008; 659: 15-30
        • Upham B.L.
        • Guzvić M.
        • Scott J.
        • et al.
        Inhibition of gap junctional intercellular communication and activation of mitogen-activated protein kinase by tumor-promoting organic peroxides and protection by resveratrol.
        Nutr Cancer. 2007; 57: 38-47
        • Kim J.H.
        • Lee B.K.
        • Lee K.W.
        • Lee H.J.
        Resveratrol counteracts gallic acid-induced down-regulation of gap-junction intercellular communication.
        J Nutr Biochem. 2009; 20: 149-154
        • Cucciolla V.
        • Borriello A.
        • Oliva A.
        • Galletti P.
        • Zappia V.
        • Della Ragione F.
        Resveratrol: from basic science to the clinic.
        Cell Cycle. 2007; 6: 2495-2510
        • Francy-Guilford J.
        • Pezzuto J.M.
        Mechanisms of cancer chemopreventive agents: a perspective.
        Planta Med. 2008; 74: 1644-1650
        • Miksits M.
        • Wlcek K.
        • Svoboda M.
        • et al.
        Antitumor activity of resveratrol and its sulfated metabolites against human breast cancer cells.
        Planta Med. 2009; 75: 1227-1230
        • Sale S.
        • Tunstall R.G.
        • Ruparelia K.C.
        • Potter G.A.
        • Steward W.P.
        • Gescher A.J.
        Comparison of the effects of the chemopreventive agent resveratrol and its synthetic analog trans 3,4,5,4′-tetramethoxystilbene (DMU-212) on adenoma development in the Apc Min/+ mouse and cycloooygenase-2 in human-derived colon cancer cells.
        Int J Cancer. 2005; 115: 194-201
        • Lee E.-O.
        • Lee H.-J.
        • Hwang H.-S.
        • et al.
        Potent inhibition of Lewis lung cancer growth by heyneanol A from the roots of Vitis amurensis through apoptotic and anti-angiogenic activities.
        Carcinogenesis. 2006; 27: 2059-2069
        • Suh N.
        • Paul S.
        • Hao X.
        • et al.
        Pterostilbene, an active constituent of blueberries, suppresses aberrant crypt foci formation in the azoxymethane-induced colon carcinogenesis model in rats.
        Clin Cancer Res. 2007; 13: 350-355
        • Shibata M.-A.
        • Akao Y.
        • Shibata E.
        • et al.
        Vaticanol C, a novel resveratrol tetramer, reduces lymph node and lung metastases of mouse mammary carcinoma carrying p53 mutation.
        Cancer Chemother Pharmacol. 2007; 60: 681-691
        • Pan M.-H.
        • Gao J.-H.
        • Lai C.-S.
        • et al.
        Antitumor activity of 3,5,4(-trimethoxystilbene in COLO 205 cells and xenografts in SCID mice.
        Mol Carcinog. 2008; 47: 184-196