PI3K/Akt signalling pathway and cancer

      Abstract

      Phosphatidylinositol-3 kinases, PI3Ks, constitute a lipid kinase family characterized by their ability to phosphorylate inositol ring 3-OH group in inositol phospholipids to generate the second messenger phosphatidylinositol-3,4,5-trisphosphate (PI-3,4,5-P3). RPTK activation results in PI(3,4,5)P3 and PI(3,4)P2 production by PI3K at the inner side of the plasma membrane. Akt interacts with these phospholipids, causing its translocation to the inner membrane, where it is phosphorylated and activated by PDK1 and PDK2. Activated Akt modulates the function of numerous substrates involved in the regulation of cell survival, cell cycle progression and cellular growth. In recent years, it has been shown that PI3K/Akt signalling pathway components are frequently altered in human cancers. Cancer treatment by chemotherapy and γ-irradiation kills target cells primarily by the induction of apoptosis. However, the development of resistance to therapy is an important clinical problem. Failure to activate the apoptotic programme represents an important mode of drug resistance in tumor cells. Survival signals induced by several receptors are mediated mainly by PI3K/Akt, hence this pathway may decisively contribute to the resistant phenotype. Many of the signalling pathways involved in cellular transformation have been elucidated and efforts are underway to develop treatment strategies that target these specific signalling molecules or their downstream effectors. The PI3K/Akt pathway is involved in many of the mechanisms targeted by these new drugs, thus a better understanding of this crossroad can help to fully exploit the potential benefits of these new agents.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Cancer Treatment Reviews
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fruman D.A
        • Meyers R.E
        • Cantley L.C
        Phosphoinositide kinases.
        Annu. Rev. Biochem. 1998; 67: 481-507
        • Hunter T
        Signaling–2000 and beyond.
        Cell. 2000; 100: 113-127
        • Pawson T
        • Nash P
        Protein–protein interactions define specificity in signal transduction.
        Genes. Dev. 2000; 14: 1027-1047
        • Staal S.P
        Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma.
        Proc. Natl. Acad. Sci. USA. 1987; 84: 5034-5037
        • Jones P.F
        • Jakubowicz T
        • Pitossi F.J
        • Maurer F
        • Hemmings B.A
        Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily.
        Proc. Natl. Acad. Sci. USA. 1991; 88: 4171-4175
        • Coffer P.J
        • Woodgett J.R
        Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families.
        Eur. J. Biochem. 1991; 201: 475-481
        • Bellacosa A
        • Testa J.R
        • Staal S.P
        • Tsichlis P.N
        A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region.
        Science. 1991; 254: 274-277
        • Murthy S.S
        • Tosolini A
        • Taguchi T
        • Testa J.R
        Mapping of AKT3, encoding a member of the Akt/protein kinase B family, to human and rodent chromosomes by fluorescence in situ hybridization.
        Cytogenet. Cell Genet. 2000; 88: 38-40
        • Jones P.F
        • Jakubowicz T
        • Hemmings B.A
        Molecular cloning of a second form of rac protein kinase.
        Cell Regul. 1991; 2: 1001-1009
        • Andjelkovic M
        • Jones P.F
        • Grossniklaus U
        • et al.
        Developmental regulation of expression and activity of multiple forms of the Drosophila RAC protein kinase.
        J. Biol. Chem. 1995; 270: 4066-4075
        • Alessi D.R
        • Andjelkovic M
        • Caudwell B
        • et al.
        Mechanism of activation of protein kinase B by insulin and IGF-1.
        EMBO J. 1996; 15: 6541-6551
        • Blume-Jensen P
        • Hunter T
        Oncogenic kinase signalling.
        Nature. 2001; 411: 355-365
        • Lynch D.K
        • Ellis C.A
        • Edwards P.A
        • Hiles I.D
        Integrin-linked kinase regulates phosphorylation of serine 473 of protein kinase B by an indirect mechanism.
        Oncogene. 1999; 18: 8024-8032
        • Persad S
        • Attwell S
        • Gray V
        • et al.
        Regulation of protein kinase B/Akt-serine 473 phosphorylation by integrin-linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343.
        J. Biol. Chem. 2001; 276: 27462-27469
        • Delcommenne M
        • Tan C
        • Gray V
        • et al.
        Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase.
        Proc. Natl. Acad. Sci. USA. 1998; 95: 11211-11216
        • Meier R
        • Hemmings B.A
        Regulation of protein kinase B.
        J. Recept. Signal Transduct. Res. 1999; 19: 121-128
        • Testa J.R
        • Bellacosa A
        AKT plays a central role in tumorigenesis.
        Proc. Natl. Acad. Sci. USA. 2001; 98: 10983-10985
        • Chen X
        • Thakkar H
        • Tyan F
        • et al.
        Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer.
        Oncogene. 2001; 20: 6073-6083
        • Kandasamy K
        • Srivastava R.K
        Role of the phosphatidylinositol 3-kinase/PTEN/Akt kinase pathway in tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in non-small cell lung cancer cells.
        Cancer Res. 2002; 62: 4929-4937
        • Wang Q
        • Wang X
        • Hernandez A
        • et al.
        Regulation of TRAIL expression by the phosphatidylinositol 3-kinase/Akt/GSK-3 pathway in human colon cancer cells.
        J. Biol. Chem. 2002; 277: 36602-36610
        • Yuan X.J
        • Whang Y.E
        PTEN sensitizes prostate cancer cells to death receptor-mediated and drug-induced apoptosis through a FADD-dependent pathway.
        Oncogene. 2002; 21: 319-327
        • Diehl J.A
        • Cheng M
        • Roussel M.F
        • Sherr C.J
        Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization.
        Genes Dev. 1998; 12: 3499-3511
        • Zhou B.P
        • Liao Y
        • Xia W
        • et al.
        Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells.
        Nat. Cell Biol. 2001; 3: 245-252
        • Viglietto G
        • Motti M.L
        • Bruni P
        • et al.
        Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27Kip1 by PKB/Akt-mediated phosphorylation in breast cancer.
        Nat. Med. 2002; 8: 1136-1144
        • Liang J
        • Zubovitz J
        • Petrocelli T
        • et al.
        PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest.
        Nat. Med. 2002; 8: 1153-1160
        • Shin I
        • Yakes F.M
        • Rojo F
        • et al.
        PKB/Akt mediates cell-cycle progression by phosphorylation of p27Kip1 at threonine 157 and modulation of its cellular localization.
        Nat. Med. 2002; 8: 1145-1152
        • Sherr C.J
        • Weber J.D
        The ARF/p53 pathway.
        Curr. Opin. Genet. Dev. 2000; 10: 94-99
        • Tee A.R
        • Fingar D.C
        • Manning B.D
        • et al.
        Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling.
        Proc. Natl. Acad. Sci. USA. 2002; 99: 13571-13576
        • Potter C.J
        • Pedraza L.G
        • Xu T
        Akt regulates growth by directly phosphorylating Tsc2.
        Nat. Cell Biol. 2002; 4: 658-665
        • Manning B.D
        • Tee A.R
        • Logsdon M.N
        • Blenis J
        • Cantley L.C
        Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway.
        Mol. Cell. 2002; 10: 151-162
        • Inoki K
        • Li Y
        • Zhu T
        • Wu J
        • Guan K.L
        TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling.
        Nat. Cell Biol. 2002; 4: 648-657
        • Dan H.C
        • Sun M
        • Yang L
        • et al.
        Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin.
        J. Biol. Chem. 2002; 277: 35364-35370
        • Hanahan D
        • Weinberg R.A
        The hallmarks of cancer.
        Cell. 2000; 100: 57-70
        • Shayesteh L
        • Lu Y
        • Kuo W.L
        • et al.
        PIK3CA is implicated as an oncogene in ovarian cancer.
        Nat. Genet. 1999; 21: 99-102
        • Ma Y.Y
        • Wei S.J
        • Lin Y.C
        • et al.
        PIK3CA as an oncogene in cervical cancer.
        Oncogene. 2000; 19: 2739-2744
        • Bellacosa A
        • de Feo D
        • Godwin A.K
        • et al.
        Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas.
        Int. J. Cancer. 1995; 64: 280-285
        • Cheng J.Q
        • Ruggeri B
        • Klein W.M
        • et al.
        Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA.
        Proc. Natl. Acad. Sci. USA. 1996; 93: 3636-3641
        • Ruggeri B.A
        • Huang L
        • Wood M
        • Cheng J.Q
        • Testa J.R
        Amplification and overexpression of the AKT2 oncogene in a subset of human pancreatic ductal adenocarcinomas.
        Mol. Carcinog. 1998; 21: 81-86
        • Rodriguez-Viciana P
        • Warne P.H
        • Khwaja A
        • et al.
        Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras.
        Cell. 1997; 89: 457-467
        • Kauffmann-Zeh A
        • Rodriguez-Viciana P
        • Ulrich E
        • et al.
        Suppression of c-Myc-induced apoptosis by Ras signalling through PI (3)K and PKB.
        Nature. 1997; 385: 544-548
        • Harari D
        • Yarden Y
        Molecular mechanisms underlying ErbB2/HER2 action in breast cancer.
        Oncogene. 2000; 19: 6102-6114
        • Olayioye M.A
        • Neve R.M
        • Lane H.A
        • Hynes N.E
        The ErbB signaling network: receptor heterodimerization in development and cancer.
        EMBO J. 2000; 19: 3159-3167
        • Zhou B.P
        • Hu M.C
        • Miller S.A
        • et al.
        HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-kappaB pathway.
        J. Biol. Chem. 2000; 275: 8027-8031
        • Nicholson K.M
        • Anderson N.G
        The protein kinase B/Akt signalling pathway in human malignancy.
        Cell Signal. 2002; 14: 381-395
        • Weng L.P
        • Smith W.M
        • Dahia P.L
        • et al.
        PTEN suppresses breast cancer cell growth by phosphatase activity-dependent G1 arrest followed by cell death.
        Cancer Res. 1999; 59: 5808-5814
        • Lu Y
        • Lin Y.Z
        • LaPushin R
        • et al.
        The PTEN/MMAC1/TEP tumor suppressor gene decreases cell growth and induces apoptosis and anoikis in breast cancer cells.
        Oncogene. 1999; 18: 7034-7045
        • Simpson L
        • Parsons R
        PTEN: life as a tumor suppressor.
        Exp. Cell Res. 2001; 264: 29-41
        • O'Gorman D.M
        • Cotter T.G
        Molecular signals in anti-apoptotic survival pathways.
        Leukemia. 2001; 15: 21-34
        • Bacus S.S
        • Altomare D.A
        • Lyass L
        • et al.
        AKT2 is frequently upregulated in HER-2/neu-positive breast cancers and may contribute to tumor aggressiveness by enhancing cell survival.
        Oncogene. 2002; 21: 3532-3540
        • Knuefermann C
        • Lu Y
        • Liu B
        • et al.
        HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells.
        Oncogene. 2003; 22: 3205-3212
        • Page C
        • Lin H.J
        • Jin Y
        • et al.
        Overexpression of Akt/AKT can modulate chemotherapy-induced apoptosis.
        Anticancer Res. 2000; 20: 407-416
        • Hu L
        • Hofmann J
        • Lu Y
        • Mills G.B
        • Jaffe R.B
        Inhibition of phosphatidylinositol 3-kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models.
        Cancer Res. 2002; 62: 1087-1092
        • Aoudjit F
        • Vuori K
        Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells.
        Oncogene. 2001; 20: 4995-5004
        • Brognard J
        • Clark A.S
        • Ni Y
        • Dennis P.A
        Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation.
        Cancer Res. 2001; 61: 3986-3997
        • Schmidt M
        • Hovelmann S
        • Beckers T.L
        A novel form of constitutively active farnesylated Akt1 prevents mammary epithelial cells from anoikis and suppresses chemotherapy-induced apoptosis.
        Br. J. Cancer. 2002; 87: 924-932
        • Ng S.S.W
        • Tsao M.S
        • Chow S
        • Hedley D.W
        Inhibition of phosphatidylinositide 3-kinase enhances gemcitabine-induced apoptosis in human pancreatic cancer cells.
        Cancer Res. 2000; 60: 5451-5455
        • Tanaka M
        • Koul D
        • Davies M.A
        • et al.
        MMAC1/PTEN inhibits cell growth and induces chemosensitivity to doxorubicin in human bladder cancer cells.
        Oncogene. 2000; 19: 5406-5412
        • Roy H.K
        • Olusola B.F
        • Clemens D.L
        • et al.
        AKT proto-oncogene overexpression is an early event during sporadic colon carcinogenesis.
        Carcinogenesis. 2002; 23: 201-205
        • Itoh N
        • Semba S
        • Ito M
        • et al.
        Phosphorylation of Akt/PKB is required for suppression of cancer cell apoptosis and tumor progression in human colorectal carcinoma.
        Cancer. 2002; 94: 3127-3134
        • Gupta A.K
        • McKenna W.G
        • Weber C.N
        • et al.
        Local recurrence in head and neck cancer: relationship to radiation resistance and signal transduction.
        Clin. Cancer Res. 2002; 8: 885-892
        • Fabbro D
        • Parkinson D
        • Matter A
        Protein tyrosine kinase inhibitors: new treatment modalities?.
        Curr. Opin. Pharmacol. 2002; 2: 374-381
        • Wakeling A.E
        Epidermal growth factor receptor tyrosine kinase inhibitors.
        Curr. Opin. Pharmacol. 2002; 2: 382-387
        • de Bono J.S
        • Rowinsky E.K
        The ErbB receptor family: a therapeutic target for cancer.
        Trends Mol. Med. 2002; 8: S19-S26
        • Herbst R.S
        • Shin D.M
        Monoclonal antibodies to target epidermal growth factor receptor-positive tumors: a new paradigm for cancer therapy.
        Cancer. 2002; 94: 1593-1611
        • Sirotnak F.M
        • Zakowski M.F
        • Miller V.A
        • Scher H.I
        • Kris M.G
        Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase.
        Clin. Cancer Res. 2000; 6: 4885-4892
        • Pollack V.A
        • Savage D.M
        • Baker D.A
        • et al.
        Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358,774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice.
        J. Pharmacol. Exp. Ther. 1999; 291: 739-748
        • Lynch D.H
        • Yang X.D
        Therapeutic potential of ABX-EGF: a fully human anti-epidermal growth factor receptor monoclonal antibody for cancer treatment.
        Semin. Oncol. 2002; 29: 47-50
        • Yang X.D
        • Jia X.C
        • Corvalan J.R
        • Wang P
        • Davis C.G
        Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy.
        Crit. Rev. Oncol. Hematol. 2001; 38: 17-23
        • Hambek M
        • Solbach C
        • Schnuerch H.G
        • et al.
        Tumor necrosis factor alpha sensitizes low epidermal growth factor receptor (EGFR)-expressing carcinomas for anti-EGFR therapy.
        Cancer Res. 2001; 61: 1045-1049
        • Herbst R.S
        ZD1839: targeting the epidermal growth factor receptor in cancer therapy.
        Expert. Opin. Investig. Drugs. 2002; 11: 837-849
        • Hidalgo M
        • Siu L.L
        • Nemunaitis J
        • et al.
        Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies.
        J. Clin. Oncol. 2001; 19: 3267-3279
        • Robert F
        • Ezekiel M.P
        • Spencer S.A
        • et al.
        Phase I study of anti-epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer.
        J. Clin. Oncol. 2001; 19: 3234-3243
        • Slamon D.J
        • Leyland-Jones B
        • Shak S
        • et al.
        Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2.
        N. Engl. J. Med. 2001; 344: 783-792
        • Ohkanda J
        • Knowles D.B
        • Blaskovich M.A
        • Sebti S.M
        • Hamilton A.D
        Inhibitors of protein farnesyltransferase as novel anticancer agents.
        Curr. Top. Med. Chem. 2002; 2: 303-323
        • Singh S.B
        • Lingham R.B
        Current progress on farnesyl protein transferase inhibitors.
        Curr. Opin. Drug Discov. Dev. 2002; 5: 225-244
        • Crooke S.T
        Potential roles of antisense technology in cancer chemotherapy.
        Oncogene. 2000; 19: 6651-6659
        • Mukhopadhyay T
        • Tainsky M
        • Cavender A.C
        • Roth J.A
        Specific inhibition of K-ras expression and tumorigenicity of lung cancer cells by antisense RNA.
        Cancer Res. 1991; 51: 1744-1748
        • Chen G
        • Oh S
        • Monia B.P
        • Stacey D.W
        Antisense oligonucleotides demonstrate a dominant role of c-Ki-RAS proteins in regulating the proliferation of diploid human fibroblasts.
        J. Biol. Chem. 1996; 271: 28259-28265
        • Powis G
        • Bonjouklian R
        • Berggren M.M
        • et al.
        Wortmannin, a potent and selective inhibitor of phosphatidylinositol-3-kinase.
        Cancer Res. 1994; 54: 2419-2423
        • Schultz R.M
        • Merriman R.L
        • Andis S.L
        • et al.
        In vitro and in vivo antitumor activity of the phosphatidylinositol-3-kinase inhibitor, wortmannin.
        Anticancer Res. 1995; 15: 1135-1139
        • Ng S.S
        • Tsao M.S
        • Nicklee T
        • Hedley D.W
        Wortmannin inhibits pkb/akt phosphorylation and promotes gemcitabine antitumor activity in orthotopic human pancreatic cancer xenografts in immunodeficient mice.
        Clin. Cancer Res. 2001; 7: 3269-3275
        • Lemke L.E
        • Paine-Murrieta G.D
        • Taylor C.W
        • Powis G
        Wortmannin inhibits the growth of mammary tumors despite the existence of a novel wortmannin-insensitive phosphatidylinositol-3-kinase.
        Cancer Chemother. Pharmacol. 1999; 44: 491-497
        • Rosenzweig K.E
        • Youmell M.B
        • Palayoor S.T
        • Price B.D
        Radiosensitization of human tumor cells by the phosphatidylinositol-3-kinase inhibitors wortmannin and LY294002 correlates with inhibition of DNA-dependent protein kinase and prolonged G2-M delay.
        Clin. Cancer Res. 1997; 3: 1149-1156
        • Sarkaria J.N
        • Tibbetts R.S
        • Busby E.C
        • et al.
        Inhibition of phosphoinositide 3-kinase related kinases by the radiosensitizing agent wortmannin.
        Cancer Res. 1998; 58: 4375-4382
        • Kim S.H
        • Um J.H
        • Dong-Won B
        • et al.
        Potentiation of chemosensitivity in multidrug-resistant human leukemia CEM cells by inhibition of DNA-dependent protein kinase using wortmannin.
        Leuk. Res. 2000; 24: 917-925
        • Wang Q
        • Li N
        • Wang X
        • Kim M.M
        • Evers B.M
        Augmentation of sodium butyrate-induced apoptosis by phosphatidylinositol 3-kinase inhibition in the KM20 human colon cancer cell line.
        Clin. Cancer Res. 2002; 8: 1940-1947
        • Casagrande F
        • Bacqueville D
        • Pillaire M.J
        • et al.
        G1 phase arrest by the phosphatidylinositol 3-kinase inhibitor LY 294002 is correlated to up-regulation of p27Kip1 and inhibition of G1 CDKs in choroidal melanoma cells.
        FEBS Lett. 1998; 422: 385-390
        • Hu L
        • Zaloudek C
        • Mills G.B
        • Gray J
        • Jaffe R.B
        In vivo and in vitro ovarian carcinoma growth inhibition by a phosphatidylinositol 3-kinase inhibitor (LY294002).
        Clin. Cancer Res. 2000; 6: 880-886
        • Semba S
        • Itoh N
        • Ito M
        • Harada M
        • Yamakawa M
        The in vitro and in vivo effects of 2-(4-morpholinyl)-8-phenyl-chromone (LY294002), a specific inhibitor of phosphatidylinositol 3-kinase, in human colon cancer cells.
        Clin. Cancer Res. 2002; 8: 1957-1963
        • Clark A.S
        • West K
        • Streicher S
        • Dennis P.A
        Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells.
        Mol. Cancer Ther. 2002; 1: 707-717
        • Douros J
        • Suffness M
        New antitumor substances of natural origin.
        Cancer Treat. Rev. 1981; 8: 63-87
        • Eng C.P
        • Sehgal S.N
        • Vezina C
        Activity of rapamycin (AY-22,989) against transplanted tumors.
        J. Antibiot. (Tokyo). 1984; 37: 1231-1237
        • Muthukkumar S
        • Ramesh T.M
        • Bondada S
        Rapamycin, a potent immunosuppressive drug, causes programmed cell death in B lymphoma cells.
        Transplantation. 1995; 60: 264-270
        • Seufferlein T
        • Rozengurt E
        Rapamycin inhibits constitutive p70s6k phosphorylation, cell proliferation, and colony formation in small cell lung cancer cells.
        Cancer Res. 1996; 56: 3895-3897
        • Hosoi H
        • Dilling M.B
        • Liu L.N
        • et al.
        Studies on the mechanism of resistance to rapamycin in human cancer cells.
        Mol. Pharmacol. 1998; 54: 815-824
        • Hosoi H
        • Dilling M.B
        • Shikata T
        • et al.
        Rapamycin causes poorly reversible inhibition of mTOR and induces p53-independent apoptosis in human rhabdomyosarcoma cells.
        Cancer Res. 1999; 59: 886-894
        • Grewe M
        • Gansauge F
        • Schmid R.M
        • Adler G
        • Seufferlein T
        Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells.
        Cancer Res. 1999; 59: 3581-3587
        • Majewski M
        • Korecka M
        • Kossev P
        • et al.
        The immunosuppressive macrolide RAD inhibits growth of human Epstein-Barr virus-transformed B lymphocytes in vitro and in vivo: a potential approach to prevention and treatment of posttransplant lymphoproliferative disorders.
        Proc. Natl. Acad. Sci. USA. 2000; 97: 4285-4290
        • Dudkin L
        • Dilling M.B
        • Cheshire P.J
        • et al.
        Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition.
        Clin. Cancer Res. 2001; 7: 1758-1764
        • Shi Y
        • Frankel A
        • Radvanyi L.G
        • et al.
        Rapamycin enhances apoptosis and increases sensitivity to cisplatin in vitro.
        Cancer Res. 1995; 55: 1982-1988
        • Gibbons J.Jea
        The effect of CCI-779, a novel macrolide anti-tumor agent, on the growth of human tumor cells in vitro and in nude mouse xenografts in vivo.
        Proc. Am. Assoc. Cancer Res. 1999; 40: 2000
        • Geoerger B
        • Kerr K
        • Tang C.B
        • et al.
        Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy.
        Cancer Res. 2001; 61: 1527-1532
        • Hidalgo M
        Phase I and pharmacological study of CCI-779, a cell cycle inhibitor.
        Clin. Cancer Res. (Suppl). 2000; 6: 413
        • Hidalgo M
        CCI-779, a rapamycin analog and multifaceted inhibitor of signal transduction: a phase I study.
        Proc. Am. Soc. Clin. Oncol. 2000; 19: 726
        • Raymond E
        CCI-779, an ester analogue of rapamycin that interacts with PTEN/PI3 kinase pathways: a phase I study utilizing a weekly intravenous schedule.
        Clin. Cancer Res. (Suppl). 2000; 6: 414
        • Raymond E
        CCI-779, a rapamycin analog with antitumor activity: a phase I study utilizing a weekly schedule.
        Proc. Am. Soc. Clin. Oncol. 2000; 19: 728
        • Chan S
        First report: a phase 2 study of the safety and activity of CCI-779 for patients with locally advanced or metastatic breast cancer failing prior chemotherapy.
        Proc. Am. Soc. Clin. Oncol. 2002; 21: 175
        • Atkins M.B
        A randomized double-blind phase 2 study of intravenous CCI-779 administered weekly to patients with advanced renal cell carcinoma.
        Proc. Am. Soc. Clin. Oncol. 2002; 21: 36