Advertisement

Local hyperthermia combined with radiotherapy and-/or chemotherapy: Recent advances and promises for the future

      Highlights

      • Hyperthermia is a potent radio- and chemosensitizer.
      • Hyperthermia could be potentiating radiation induced immunomodulation.
      • Hyperthermia with radiotherapy and-/or chemotherapy improves clinical outcome.
      • Technical developments allow more effective and safer delivery of hyperthermia.
      • Hyperthermia is a potent addendum to the existing cancer treatment modalities.

      Abstract

      Hyperthermia, one of the oldest forms of cancer treatment involves selective heating of tumor tissues to temperatures ranging between 39 and 45 °C. Recent developments based on the thermoradiobiological rationale of hyperthermia indicate it to be a potent radio- and chemosensitizer. This has been further corroborated through positive clinical outcomes in various tumor sites using thermoradiotherapy or thermoradiochemotherapy approaches. Moreover, being devoid of any additional significant toxicity, hyperthermia has been safely used with low or moderate doses of reirradiation for retreatment of previously treated and recurrent tumors, resulting in significant tumor regression. Recent in vitro and in vivo studies also indicate a unique immunomodulating prospect of hyperthermia, especially when combined with radiotherapy. In addition, the technological advances over the last decade both in hardware and software have led to potent and even safer loco-regional hyperthermia treatment delivery, thermal treatment planning, thermal dose monitoring through noninvasive thermometry and online adaptive temperature modulation. The review summarizes the outcomes from various clinical studies (both randomized and nonrandomized) where hyperthermia is used as a thermal sensitizer of radiotherapy and-/or chemotherapy in various solid tumors and presents an overview of the progresses in loco-regional hyperthermia. These recent developments, supported by positive clinical outcomes should merit hyperthermia to be incorporated in the therapeutic armamentarium as a safe and an effective addendum to the existing oncological treatment modalities.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment
      ESMO Member Login
      Login with your ESMO username and password.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Breasted JH. The Edwin Schmid surgical papyrus. In: Licht S, editor. Therapeutic heat and coal. 2nd ed., Baltimore: Waverly Press; 1930: p. 196.

        • Singh B.B.
        Hyperthermia: an ancient science in India.
        Int J Hyperthermia. 1991; 7: 1-6
        • Coley W.B.
        The treatment of malignant tumors by repeated inoculations of erysipelas, with a report of ten original cases.
        Am J Med Sci. 1893; 105: 488-511
        • Muller C.
        Eine neue Behandlungsmethode bosartiger.
        Geschwulste. 1910; 57: 1490-1493
        • Warren S.L.
        Preliminary study of the effects of artificial fever upon hopeless tumor cases.
        Am J Roentgenol. 1935; 33: 75-87
        • van der Zee J.
        • Vujaskovic Z.
        • Kindo M.
        • Sugahara T.
        The Kadota Fund International Forum 2004 – clinical group consensus.
        Int J Hyperthermia. 2008; 24: 111-112
        • Hurwitz M.
        • Stauffer P.
        Hyperthermia, radiation and chemotherapy: the role of heat in multidisciplinary cancer care.
        Semin Oncol. 2014; 41: 714-729
        • Horsman M.R.
        • Overgaard J.
        Hyperthermia: a potent enhancer of radiotherapy.
        Clin Oncol (R Coll Radiol). 2007; 19: 418-426
        • Dewey W.C.
        Arrhenius relationships from the molecule and cell to the clinic.
        Int J Hyperthermia. 1994; 10: 457-483
        • Perez C.A.
        • Pajak T.
        • Emami B.
        • Hornback N.B.
        • Tupchong L.
        • Rubin P.
        Randomized phase III study comparing irradiation and hyperthermia with irradiation alone in superficial measurable tumors. Final report by the Radiation Therapy Oncology Group.
        Am J Clin Oncol. 1991; 14: 133-141
        • Perez C.A.
        • Gillespie B.
        • Pajak T.
        • Hornback N.B.
        • Emami B.
        • Rubin P.
        Quality assurance problems in clinical hyperthermia and their impact on therapeutic outcome: a report by the Radiation Therapy Oncology Group.
        Int J Radiat Oncol Biol Phys. 1989; 16: 551-558
        • Emami B.
        • Scott C.
        • Perez C.A.
        • Asbell S.
        • Swift P.
        • Grigsby P.
        • et al.
        Phase III study of interstitial thermoradiotherapy compared with interstitial radiotherapy alone in the treatment of recurrent or persistent human tumors. A prospectively controlled randomized study by the Radiation Therapy Oncology Group.
        Int J Radiat Oncol Biol Phys. 1996; 34: 1097-1104
      2. Diagnostic and therapeutic technology assessment. Hyperthermia as adjuvant treatment for recurrent breast cancer and primary malignant glioma.
        JAMA. 1994; 271: 797-802
        • Datta N.R.
        • Puric E.
        • Schneider R.
        • Weber D.C.
        • Rogers S.
        • Bodis S.
        Could hyperthermia with proton therapy mimic carbon ion therapy? Exploring a thermo-radiobiological rationale.
        Int J Hyperthermia. 2014; 30: 524-530
        • Issels R.
        Hyperthermia combined with chemotherapy – biological rationale, clinical application, and treatment results.
        Onkologie. 1999; 22: 374-381
        • Dewhirst M.W.
        • Vujaskovic Z.
        • Jones E.
        • Thrall D.
        Re-setting the biologic rationale for thermal therapy.
        Int J Hyperthermia. 2005; 21: 779-790
        • Baronzio G.
        • Gramaglia A.
        • Fiorentini G.
        Hyperthermia and immunity. A brief overview.
        In Vivo. 2006; 20: 689-695
      3. Hoption Cann SA, van Netten JP, van Netten C. Dr William Coley and tumour regression: a place in history or in the future. Postgrad Med J 2003;79:672–80.

        • Repasky E.A.
        • Evans S.S.
        • Dewhirst M.W.
        Temperature matters! And why it should matter to tumor immunologists.
        Cancer Immunol Res. 2013; 1: 210-216
        • Skitzki J.J.
        • Repasky E.A.
        • Evans S.S.
        Hyperthermia as an immunotherapy strategy for cancer.
        Curr Opin Investig Drugs. 2009; 10: 550-558
        • Demaria S.
        • Ng B.
        • Devitt M.L.
        • Babb J.S.
        • Kawashima N.
        • Liebes L.
        • et al.
        Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated.
        Int J Radiat Oncol Biol Phys. 2004; 58: 862-870
        • Frey B.
        • Rubner Y.
        • Wunderlich R.
        • Weiss E.M.
        • Pockley A.G.
        • Fietkau R.
        • et al.
        Induction of abscopal anti-tumor immunity and immunogenic tumor cell death by ionizing irradiation – implications for cancer therapies.
        Curr Med Chem. 2012; 19: 1751-1764
        • Apetoh L.
        • Ghiringhelli F.
        • Tesniere A.
        • Obeid M.
        • Ortiz C.
        • Criollo A.
        • et al.
        Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy.
        Nat Med. 2007; 13: 1050-1059
        • Chen T.
        • Guo J.
        • Han C.
        • Yang M.
        • Cao X.
        Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via tlr4 pathway.
        J Immunol. 2009; 182: 1449-1459
        • Todryk S.
        • Melcher A.A.
        • Hardwick N.
        • Linardakis E.
        • Bateman A.
        • Colombo M.P.
        • et al.
        Heat shock protein 70 induced during tumor cell killing induces th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake.
        J Immunol. 1999; 163: 1398-1408
        • Multhoff G.
        • Pockley A.G.
        • Streffer C.
        • Gaipl U.S.
        Dual role of heat shock proteins (HSPs) in anti-tumor immunity.
        Curr Mol Med. 2012; 12: 1174-1182
        • Basu S.
        • Binder R.J.
        • Suto R.
        • Anderson K.M.
        • Srivastava P.K.
        Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway.
        Int Immunol. 2000; 12: 1539-1546
        • Noessner E.
        • Gastpar R.
        • Milani V.
        • Brandl A.
        • Hutzler P.J.
        • Kuppner M.C.
        • et al.
        Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells.
        J Immunol. 2002; 169: 5424-5432
        • Schildkopf P.
        • Frey B.
        • Mantel F.
        • Ott O.J.
        • Weiss E.M.
        • Sieber R.
        • et al.
        Application of hyperthermia in addition to ionizing irradiation fosters necrotic cell death and HMGB1 release of colorectal tumor cells.
        Biochem Biophys Res Commun. 2010; 391: 1014-1020
        • Schildkopf P.
        • Frey B.
        • Ott O.J.
        • Rubner Y.
        • Multhoff G.
        • Sauer R.
        • et al.
        Radiation combined with hyperthermia induces HSP70-dependent maturation of dendritic cells and release of pro-inflammatory cytokines by dendritic cells and macrophages.
        Radiother Oncol. 2011; 101: 109-115
        • Mantel F.
        • Frey B.
        • Haslinger S.
        • Schildkopf P.
        • Sieber R.
        • Ott O.J.
        • et al.
        Combination of ionising irradiation and hyperthermia activates programmed apoptotic and necrotic cell death pathways in human colorectal carcinoma cells.
        Strahlenther Onkol. 2010; 186: 587-599
        • Frey B.
        • Weiss E.M.
        • Rubner Y.
        • Wunderlich R.
        • Ott O.J.
        • Sauer R.
        • et al.
        Old and new facts about hyperthermia-induced modulations of the immune system.
        Int J Hyperthermia. 2012; 28: 528-542
        • Knippertz I.
        • Stein M.F.
        • Dorrie J.
        • Schaft N.
        • Muller I.
        • Deinzer A.
        • et al.
        Mild hyperthermia enhances human monocyte-derived dendritic cell functions and offers potential for applications in vaccination strategies.
        Int J Hyperthermia. 2011; 27: 591-603
      4. Datta NR, Grobholz R, Puric E, Bode-Lesniewska B, Lomax N, Khan S, et al. Enhanced tumour regression in a patient of liposarcoma treated with radiotherapy and hyperthermia: hint for dynamic immunomodulation by hyperthermia. Int J Hyperthermia 2015 Apr 20:1–4. [Epub ahead of print].

        • Toraya-Brown S.
        • Fiering S.
        Local tumour hyperthermia as immunotherapy for metastatic cancer.
        Int J Hyperthermia. 2014; 30: 531-539
        • Schildkopf P.
        • Ott O.J.
        • Frey B.
        • Wadepohl M.
        • Sauer R.
        • Fietkau R.
        • et al.
        Biological rationales and clinical applications of temperature controlled hyperthermia–implications for multimodal cancer treatments.
        Curr Med Chem. 2010; 17: 3045-3057
        • Vernon C.C.
        • Hand J.W.
        • Field S.B.
        • Machin D.
        • Whaley J.B.
        • van der Zee J.
        • et al.
        Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. International collaborative hyperthermia group.
        Int J Radiat Oncol Biol Phys. 1996; 35: 731-744
        • Masunaga S.
        • Hiraoka M.
        • Takahashi M.
        • Jo S.
        • Akuta K.
        • Nishimura Y.
        • et al.
        Clinical results of thermoradiotherapy for locally advanced and/or recurrent breast cancer–comparison of results with radiotherapy alone.
        Int J Hyperthermia. 1990; 6: 487-497
        • Zolciak-Siwinska A.
        • Piotrkowicz N.
        • Jonska-Gmyrek J.
        • Nicke-Psikuta M.
        • Michalski W.
        • Kawczyńska M.
        • et al.
        HDR brachytherapy combined with interstitial hyperthermia in locally advanced cervical cancer patients initially treated with concomitant radiochemotherapy – a phase III study.
        Radiother Oncol. 2013; 109: 194-199
        • Franckena M.
        • Stalpers L.J.
        • Koper P.C.
        • Wiggenraad R.G.
        • Hoogenraad W.J.
        • van Dijk J.D.
        • et al.
        Long-term improvement in treatment outcome after radiotherapy and hyperthermia in locoregionally advanced cervix cancer: an update of the Dutch deep hyperthermia trial.
        Int J Radiat Oncol Biol Phys. 2008; 70: 1176-1182
        • Harima Y.
        • Nagata K.
        • Harima K.
        • Ostapenko V.V.
        • Tanaka Y.
        • Sawada S.
        A randomized clinical trial of radiation therapy versus thermoradiotherapy in stage IIIB cervical carcinoma.
        Int J Hyperthermia. 2001; 17: 97-105
        • Sharma S.
        • Singhal S.
        • Sandhu A.P.
        • Ghoshal S.
        • Gupta B.D.
        • Yadav N.S.
        Local thermo-radiotherapy in carcinoma cervix: improved local control versus increased incidence of distant metastasis.
        Asia Oceania J Obstet Gynaecol. 1991; 17: 5-12
        • Datta N.R.
        • Bose A.K.
        • Kapoor H.K.
        Thermoradiotherapy in the management of carcinoma cervix (stage IIIB): a controlled clinical study.
        Indian Med Gazette. 1987; 121: 68-71
        • Chen H.W.
        • Fan J.J.
        • Luo W.
        A randomized trial of hyperthermia-radiochemotherapy for uterine cervix cancer.
        Zhonghua Zhong Liu Za Zhi. 1997; 24: 249-251
        • Wen Q.L.
        • He L.J.
        • Ren P.R.
        • Chen C.Q.
        • Wu J.B.
        Comparing radiotherapy with or without intracavitary hyperthermia in the treatment of primary nasopharyngeal carcinoma: a retrospective analysis.
        Tumori. 2014; 100: 49-54
        • Kang M.
        • Liu W.Q.
        • Qin Y.T.
        • Wei Z.X.
        • Wang R.S.
        Long-term efficacy of microwave hyperthermia combined with chemoradiotherapy in treatment of nasopharyngeal carcinoma with cervical lymph node metastases.
        Asian Pac J Cancer Prev. 2013; 14: 7395-7400
        • Hua Y.
        • Ma S.
        • Fu Z.
        • Hu Q.
        • Wang L.
        • Piao Y.
        Intracavity hyperthermia in nasopharyngeal cancer: a phase III clinical study.
        Int J Hyperthermia. 2011; 27: 180-186
        • Huilgol N.G.
        • Gupta S.
        • Sridhar C.R.
        Hyperthermia with radiation in the treatment of locally advanced head and neck cancer: a report of randomized trial.
        J Cancer Res Ther. 2010; 6: 492-496
        • Hiraki Y.
        • Nakajo M.
        • Miyaji N.
        • Takeshita T.
        • Churei H.
        • Ogita M.
        Effectiveness of RF capacitive hyperthermia combined with radiotherapy for stages III and IV oro-hypopharyngeal cancers: a non-randomized comparison between thermoradiotherapy and radiotherapy.
        Int J Hyperthermia. 1998; 14: 445-457
        • Valdagni R.
        • Amichetti M.
        Report of long-term follow-up in a randomized trial comparing radiation therapy and radiation therapy plus hyperthermia to metastatic lymph nodes in stage IV head and neck patients.
        Int J Radiat Oncol Biol Phys. 1994; 28: 163-169
        • Svetitsky P.V.
        Effect of microwave and ionizing radiation in patients with recurrent laryngeal carcinoma.
        J Laryngol Otol. 1990; 104: 704-705
        • Datta N.R.
        • Bose A.K.
        • Kapoor H.K.
        • Gupta S.
        Head and neck cancers: results of thermoradiotherapy versus radiotherapy.
        Int J Hyperthermia. 1990; 6: 479-486
        • van der Zee J.
        • González González D.
        • van Rhoon G.C.
        • van Dijk J.D.
        • van Putten W.L.
        • Hart A.A.
        Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group.
        Lancet. 2000; 355: 1119-1125
        • Trotter J.M.
        • Edis A.J.
        • Blackwell J.B.
        • Lamb M.H.
        • Bayliss E.J.
        • Shepherd J.M.
        • et al.
        Adjuvant VHF therapy in locally recurrent and primary unresectable rectal cancer.
        Australas Radiol. 1996; 40: 298-305
        • You Y.T.
        • Wang J.Y.
        • Changchien C.R.
        • Chen J.S.
        • Hsu K.C.
        • Tang R.
        • et al.
        An alternative treatment of anal squamous cell carcinoma: combined radiotherapy and chemotherapy.
        J Surg Oncol. 1993; 52: 42-45
        • Berdov B.A.
        • Menteshashvili G.Z.
        Thermoradiotherapy of patients with locally advanced carcinoma of the rectum.
        Int J Hyperthermia. 1990; 6: 881-890
        • Masunaga S.I.
        • Hiraoka M.
        • Akuta K.
        • Nishimura Y.
        • Nagata Y.
        • Jo S.
        • et al.
        Phase I/II trial of preoperative thermoradiotherapy in the treatment of urinary bladder cancer.
        Int J Hyperthermia. 1994; 10: 31-40
        • Matsui K.
        • Takebayashi S.
        • Watai K.
        • Kakehi M.
        • Kubota Y.
        • Yao M.
        • et al.
        Combination radiotherapy of urinary bladder carcinoma with chemohyperthermia.
        Int J Hyperthermia. 1991; 7: 19-26
        • Nozoe T.
        • Kuwano H.
        • Watanabe M.
        • Yasuda M.
        • Sadanaga N.
        • Mimori K.
        • et al.
        The long-term results of pre-operative hyperthermo-chemo-radiotherapy for oesophageal carcinoma – a comparison with preoperative radiation therapy alone.
        Eur J Surg Oncol. 1995; 21: 374-378
        • Kuwano H.
        • Sumiyoshi K.
        • Watanabe M.
        • Sadanaga N.
        • Nozoe T.
        • Yasuda M.
        • et al.
        Preoperative hyperthermia combined with chemotherapy and irradiation for the treatment of patients with esophageal carcinoma.
        Tumori. 1995; 81: 18-22
        • Mitsumori M.
        • Zeng Z.F.
        • Oliynychenko P.
        • Park J.H.
        • Choi I.B.
        • Tatsuzaki H.
        • et al.
        Regional hyperthermia combined with radiotherapy for locally advanced non-small cell lung cancers: a multi-institutional prospective randomized trial of the International Atomic Energy Agency.
        Int J Clin Oncol. 2007; 12: 192-198
        • Karasawa K.
        • Muta N.
        • Nakagawa K.
        • Hasezawa K.
        • Terahara A.
        • Onogi Y.
        • et al.
        Thermoradiotherapy in the treatment of locally advanced nonsmall cell lung cancer.
        Int J Radiat Oncol Biol Phys. 1994; 30: 1171-1177
        • Jones E.L.
        • Oleson J.R.
        • Prosnitz L.R.
        • Samulski T.V.
        • Vujaskovic Z.
        • Yu D.
        • et al.
        Randomized trial of hyperthermia and radiation for superficial tumors.
        J Clin Oncol. 2005; 23: 3079-3085
        • Yarovoy A.A.
        • Magaramov D.A.
        • Bulgakova E.S.
        The comparison of ruthenium brachytherapy and simultaneous transpupillary thermotherapy of choroidal melanoma with brachytherapy alone.
        Brachytherapy. 2012; 11: 224-229
        • Kouloulias V.
        • Plataniotis G.
        • Kouvaris J.
        • Dardoufas C.
        • Gennatas C.
        • Uzunoglu N.
        • et al.
        Chemoradiotherapy combined with intracavitary hyperthermia for anal cancer: feasibility and long-term results from a phase II randomized trial.
        Am J Clin Oncol. 2005; 28: 91-99
        • Overgaard J.
        • Gonzalez Gonzalez D.
        • Hulshof M.C.
        • Arcangeli G.
        • Dahl O.
        • Mella O.
        • et al.
        Hyperthermia as an adjuvant to radiation therapy of recurrent or metastatic malignant melanoma. A multicentre randomized trial by the European Society for Hyperthermic Oncology.
        Int J Hyperthermia. 1996; 12: 3-20
        • Vasanthan A.
        • Mitsumori M.
        • Park J.H.
        • Zhi-Fan Z.
        • Yu-Bin Z.
        • Oliynychenko P.
        • et al.
        Regional hyperthermia combined with radiotherapy for uterine cervical cancers: a multi-institutional prospective randomized trial of the International Atomic Energy Agency.
        Int J Radiat Oncol Biol Phys. 2005; 61: 145-153
      5. Jones EL, Pronisnitz LR, Dewhirst MW, Vujaskovic Z, Samulski TV, Oleson JR, et al. In regard to Vasanathan et al. Int J Radiat Oncol Biol Phys 2005;63:644.

        • Sneed P.K.
        • Stauffer P.R.
        • McDermott M.W.
        • Diederich C.J.
        • Lamborn K.R.
        • Prados M.D.
        • et al.
        Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost +/− hyperthermia for glioblastoma multiforme.
        Int J Radiat Oncol Biol Phys. 1998; 40: 287-295
        • Zhao C.
        • Chen J.
        • Yu B.
        • Chen X.
        Improvement in quality of life in patients with nasopharyngeal carcinoma treated with non-invasive extracorporeal radiofrequency in combination with chemoradiotherapy.
        Int J Radiat Biol. 2014; 90: 853-858
        • Shchepotin I.B.
        • Evans S.R.
        • Chorny V.
        • Osinsky S.
        • Buras R.R.
        • Maligonov P.
        • et al.
        Intensive preoperative radiotherapy with local hyperthermia for the treatment of gastric carcinoma.
        Surg Oncol. 1994; 3: 37-44
        • Maluta S.
        • Schaffer M.
        • Pioli F.
        • Dall’oglio S.
        • Pasetto S.
        • Schaffer P.M.
        • et al.
        Regional hyperthermia combined with chemoradiotherapy in primary or recurrent locally advanced pancreatic cancer: an open-label comparative cohort trial.
        Strahlenther Onkol. 2011; 187: 619-625
        • Desjardins L.
        • Lumbroso-Le Rouic L.
        • Levy-Gabriel C.
        • Dendale R.
        • Delacroix S.
        • Nauraye C.
        • et al.
        Combined proton beam radiotherapy and transpupillary thermotherapy for large uveal melanomas: a randomized study of 151 patients.
        Ophthalmic Res. 2006; 38: 255-260
        • Maluta S.
        • Dall’oglio S.
        • Romano M.
        • Marciai N.
        • Pioli F.
        • Giri M.G.
        • et al.
        Conformal radiotherapy plus local hyperthermia in patients affected by locally advanced high risk prostate cancer: preliminary results of a prospective phase II study.
        Int J Hyperthermia. 2007; 23: 451-456
        • Hurwitz M.D.
        • Hansen J.L.
        • Prokopios-Davos S.
        • Manola J.
        • Wang Q.
        • Borenstein B.A.
        • et al.
        Hyperthermia combined with radiation in treatment of locally advanced prostate cancer: long-term results of DFCI 94–153 from Dana-Farber Cancer Institute study 94–153.
        Cancer. 2011; 117: 510-516
        • Colombo R.
        • Salonia A.
        • Leib Z.
        • Pavone-Macaluso M.
        • Engelstein D.
        Long-term outcomes of a randomized controlled trial comparing thermochemotherapy with mitomycin-c alone as adjuvant treatment for non-muscle-invasive bladder cancer (nmibc).
        BJU Int. 2011; 107: 912-918
        • Shen H.
        • Li X.D.
        • Wu C.P.
        • Yin Y.M.
        • Wang R.S.
        • Shu Y.Q.
        The regimen of gemcitabine and cisplatin combined with radio frequency hyperthermia for advanced non-small cell lung cancer: a phase II study.
        Int J Hyperthermia. 2011; 27: 27-32
        • Issels R.D.
        • Lindner L.H.
        • Verweij J.
        • Wust P.
        • Reichardt P.
        • Schem B.C.
        • et al.
        Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study.
        Lancet Oncol. 2010; 11: 561-570
        • Sugimachi K.
        • Kuwano H.
        • Ide H.
        • Toge T.
        • Saku M.
        • Oshiumi Y.
        Chemotherapy combined with or without hyperthermia for patients with oesophageal carcinoma: a prospective randomized trial.
        Int J Hyperthermia. 1994; 10: 485-493
        • Wessalowski R.
        • Schneider D.T.
        • Mils O.
        • Friemann V.
        • Kyrillopoulou O.
        • Schaper J.
        • et al.
        Regional deep hyperthermia for salvage treatment of children and adolescents with refractory or recurrent non-testicular malignant germ-cell tumours: an open-label, non-randomised, single-institution, phase 2 study.
        Lancet Oncol. 2013; 14: 843-852
        • Chou C.K.
        Use of heating rate and specific absorption rate in the hyperthermia clinic.
        Int J Hyperthermia. 1990; 6: 367-370
        • Sapareto S.A.
        • Dewey W.C.
        Thermal dose determination in cancer therapy.
        Int J Radiat Oncol Biol Phys. 1984; 10: 787-800
        • Dewhirst M.W.
        • Viglianti B.L.
        • Lora-Michiels M.
        • Hanson M.
        • Hoopes P.J.
        Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia.
        Int J Hyperthermia. 2003; 19: 267-294
        • Gellermann J.
        • Wust P.
        • Stalling D.
        • Seebass M.
        • Nadobny J.
        • Beck R.
        • et al.
        Clinical evaluation and verification of the hyperthermia treatment planning system Hyperplan.
        Int J Radiat Oncol Biol Phys. 2000; 47: 1145-1156
        • Paulides M.M.
        • Stauffer P.R.
        • Neufeld E.
        • Maccarini P.F.
        • Kyriakou A.
        • Canters R.A.
        • et al.
        Simulation techniques in hyperthermia treatment planning.
        Int J Hyperthermia. 2013; 29: 346-357
        • Fortunati V.
        • Verhaart R.F.
        • van der Lijn F.
        • Niessen W.J.
        • Veenland J.F.
        • Paulides M.M.
        • et al.
        Tissue segmentation of head and neck ct images for treatment planning: a multiatlas approach combined with intensity modeling.
        Med Phys. 2013; 40: 071905
        • Verhaart R.F.
        • Fortunati V.
        • Verduijn G.M.
        • van Walsum T.
        • Veenland J.F.
        • Paulides M.M.
        CT-based patient modeling for head and neck hyperthermia treatment planning: manual versus automatic normal-tissue-segmentation.
        Radiother Oncol. 2014; 111: 158-163
        • van Rhoon G.C.
        • Wust P.
        Introduction: non-invasive thermometry for thermotherapy.
        Int J Hyperthermia. 2005; 21: 489-495
        • Lüdemann L.
        • Wlodarczyk W.
        • Nadobny J.
        • Weihrauch M.
        • Gellermann J.
        • Wust P.
        Non-invasive magnetic resonance thermography during regional hyperthermia.
        Int J Hyperthermia. 2010; 26: 273-282
        • Gellermann J.
        • Hildebrandt B.
        • Issels R.
        • Ganter H.
        • Wlodarczyk W.
        • Budach V.
        • et al.
        Noninvasive magnetic resonance thermography of soft tissue sarcomas during regional hyperthermia: correlation with response and direct thermometry.
        Cancer. 2006; 107: 1373-1382
        • Gellermann J.
        • Wlodarczyk W.
        • Hildebrandt B.
        • Ganter H.
        • Nicolau A.
        • Rau B.
        • et al.
        Noninvasive magnetic resonance thermography of recurrent rectal carcinoma in a 1.5 Tesla hybrid system.
        Cancer Res. 2005; 65: 5872-5880
        • Craciunescu O.I.
        • Stauffer P.R.
        • Soher B.J.
        • Wyatt C.R.
        • Arabe O.
        • Maccarini P.
        • et al.
        Accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas.
        Med Phys. 2009; 36: 4848-4858
        • Fani F.
        • Schena E.
        • Saccomandi P.
        • Silvestri S.
        CT-based thermometry: an overview.
        Int J Hyperthermia. 2014; 30: 219-227
        • Kok H.P.
        • Ciampa S.
        • de Kroon-Oldenhof R.
        • Steggerda-Carvalho E.J.
        • van Stam G.
        • Vording Zum Vorde Sive.
        • et al.
        Toward online adaptive hyperthermia treatment planning: correlation between measured and simulated specific absorption rate changes caused by phase steering in patients.
        Int J Radiat Oncol Biol Phys. 2014; 90: 438-445
        • Fatehi D.
        • van der Zee J.
        • Notenboom A.
        • van Rhoon G.C.
        Comparison of intratumor and intraluminal temperatures during locoregional deep hyperthermia of pelvic tumors.
        Strahlenther Onkol. 2007; 183: 479-486
      6. Stauffer PR, Craciunescu OI, Maccarini PF, Arunachalam K, Arabe O, Stakhursky V, et al. Clinical utility of magnetic resonance thermal imaging (MRTI) for realtime guidance of deep hyperthermia. In: Ryan TP, editor. Proceedings of SPIE. San Jose: SPIE Press; 2009. p. OI-1-12.

        • Weihrauch M.
        • Wust P.
        • Weiser M.
        • Nadobny J.
        • Eisenhardt S.
        • Budach V.
        • et al.
        Adaptation of antenna profiles for control of MR guided hyperthermia (HT) in a hybrid MR-HT system.
        Med Phys. 2007; 34: 4717-4725
        • Canters R.A.
        • Franckena M.
        • van der Zee J.
        • van Rhoon G.C.
        Optimizing deep hyperthermia treatments: are locations of patient pain complaints correlated with modelled SAR peak locations?.
        Phys Med Biol. 2011; 56: 439-451
        • Rijnen Z.
        • Bakker J.F.
        • Canters R.A.
        • Togni P.
        • Verduijn G.M.
        • Levendag P.C.
        • et al.
        Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck.
        Int J Hyperthermia. 2013; 29: 181-193
        • Canters R.A.
        • Franckena M.
        • van der Zee J.
        • van Rhoon G.C.
        Complaint-adaptive power density optimization as a tool for HTP-guided steering in deep hyperthermia treatment of pelvic tumors.
        Phys Med Biol. 2008; 53: 6799-6820
        • Franckena M.
        • Canters R.
        • Termorshuizen F.
        • Van Der Zee J.
        • van Rhoon G.
        Clinical implementation of hyperthermia treatment planning guided steering: a cross over trial to assess its current contribution to treatment quality.
        Int J Hyperthermia. 2010; 26: 145-157
        • Togni P.
        • Rijnen Z.
        • Numan W.C.
        • Verhaart R.F.
        • Bakker J.F.
        • van Rhoon G.C.
        • et al.
        Electromagnetic redesign of the hypercollar applicator: toward improved deep local head-and-neck hyperthermia.
        Phys Med Biol. 2013; 58: 5997-6009
      7. Fortunati V, Verhaart RF, van der Lijn F, Niessen WJ, Veenland JF, Paulides MM, et al. Hyperthermia critical tissues automatic segmentation of head and neck CT images using atlas registration and graph cuts. IEEE-ISBI. Barcelona 2012, pp. 1683–86, doi: http://dx.doi.org/10.1109/ISBI.2012.6235902.

        • Fortunati V.
        • Verhaart R.F.
        • Angeloni F.
        • van der Lugt A.
        • Niessen W.J.
        • Veenland J.F.
        • et al.
        Feasibility of multimodal deformable registration for head and neck tumor treatment planning.
        Int J Radiat Oncol Biol Phys. 2014; 90: 85-93
        • Ranneberg M.
        • Weiser M.
        • Weihrauch M.
        • Budach V.
        • Gellermann J.
        • Wust P.
        Regularized antenna profile adaptation in online hyperthermia treatment.
        Med Phys. 2010; 37: 5382-5394
        • van Lier A.L.
        • Raaijmakers A.
        • Voigt T.
        • Lagendijk J.J.
        • Luijten P.R.
        • Katscher U.
        • et al.
        Electrical properties tomography in the human brain at 1.5, 3, and 7T: a comparison study.
        Magn Reson Med. 2014; 71: 354-363
        • Balidemaj E.
        • van Lier A.L.
        • Crezee H.
        • Nederveen A.J.
        • Stalpers L.J.
        • van den Berg C.A.
        Feasibility of electric property tomography of pelvic tumors at 3T.
        Magn Reson Med. 2015; 73: 1505-1513
        • Ludemann L.
        • Wust P.
        • Gellermann J.
        Perfusion measurement using DCE-MRI: implications for hyperthermia.
        Int J Hyperthermia. 2008; 24: 91-96
        • Raaymakers B.W.
        • van Vulpen M.
        • Lagendijk J.J.
        • De Leeuw A.A.
        • Crezee J.
        • Battermann J.J.
        Determination and validation of the actual 3D temperature distribution during interstitial hyperthermia of prostate carcinoma.
        Phys Med Biol. 2001; 46: 3115-3131
        • Verhaart R.F.
        • Rijnen Z.
        • Fortunati V.
        • Verduijn G.M.
        • Walsum T.V.
        • Veenland J.F.
        • et al.
        Temperature simulations in hyperthermia treatment planning of the head and neck region: rigorous optimization of tissue properties.
        Strahlenther Onkol. 2014; 190: 1117-1124
        • Kampinga H.H.
        • Dynlacht J.R.
        • Dikomey E.
        Mechanism of radiosensitization by hyperthermia (> or = 43 °C) as derived from studies with DNA repair defective mutant cell lines.
        Int J Hyperthermia. 2004; 20: 131-139
        • Krawczyk P.M.
        • Eppink B.
        • Essers J.
        • Stap J.
        • Rodermond H.
        • Odijk H.
        • et al.
        Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-Ribose) polymerase-1 inhibition.
        Proc Natl Acad Sci USA. 2011; 108: 9851-9856
        • Overgaard J.
        Simultaneous and sequential hyperthermia and radiation treatment of an experimental tumor and its surrounding normal tissue in vivo.
        Int J Radiat Oncol Biol Phys. 1980; 6: 1507-1517
        • Kok H.P.
        • Crezee J.
        • Franken N.A.
        • Stalpers L.J.
        • Barendsen G.W.
        • Bel A.
        Quantifying the combined effect of radiation therapy and hyperthermia in terms of equivalent dose distributions.
        Int J Radiat Oncol Biol Phys. 2014; 88: 739-745
        • Chatterjee D.K.
        • Diagaradjane P.
        • Krishnan S.
        Nanoparticle-mediated hyperthermia in cancer therapy.
        Ther Deliv. 2011; 2: 1001-1014
        • Staruch R.M.
        • Hynynen K.
        • Chopra R.
        Hyperthermia-mediated doxorubicin release from thermosensitive liposomes using MR-HIFU: therapeutic effect in rabbit Vx2 tumours.
        Int J Hyperthermia. 2015; 31: 133-188
        • Dicheva B.M.
        • Koning G.A.
        Targeted thermosensitive liposomes: an attractive novel approach for increased drug delivery to solid tumors.
        Expert Opin Drug Deliv. 2014; 11: 83-100
        • Burke A.R.
        • Singh R.N.
        • Carroll D.L.
        • Wood J.C.
        • D’Agostino R.B.
        • Ajayan P.M.
        • et al.
        The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy.
        Biomaterials. 2012; 33: 2961-2970
        • Maier-Hauff K.
        • Ulrich F.
        • Nestler D.
        • Niehoff H.
        • Wust P.
        • Thiesen B.
        • et al.
        Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme.
        J Neurooncol. 2011; 103: 317-324
        • Johannsen M.
        • Gneveckow U.
        • Thiesen B.
        • Taymoorian K.
        • Cho C.H.
        • Waldöfner N.
        • et al.
        Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution.
        Eur Urol. 2007; 52: 1653-1661
        • Levegrün S.
        • Jackson A.
        • Zelefsky M.J.
        • Skwarchuk M.W.
        • Venkatraman E.S.
        • Schlegel W.
        • et al.
        Fitting tumor control probability models to biopsy outcome after three-dimensional conformal radiation therapy of prostate cancer: pitfalls in deducing radiobiologic parameters for tumors from clinical data.
        Int J Radiat Oncol Biol Phys. 2001; 51: 1064-1080