Cannabinoids: A new hope for breast cancer therapy?

  • Author Footnotes
    a Present address: Dept. Pathology, University of Cambridge, Cambridge, UK.
    María M. Caffarel
    a Present address: Dept. Pathology, University of Cambridge, Cambridge, UK.
    Dept. Biochemistry and Molecular Biology I, School of Biology, Complutense University-CIBERNED-IRYCIS, Madrid, Spain
    Search for articles by this author
  • Clara Andradas
    Dept. Biochemistry and Molecular Biology I, School of Biology, Complutense University-CIBERNED-IRYCIS, Madrid, Spain
    Search for articles by this author
  • Eduardo Pérez-Gómez
    Dept. Biochemistry and Molecular Biology I, School of Biology, Complutense University-CIBERNED-IRYCIS, Madrid, Spain
    Search for articles by this author
  • Manuel Guzmán
    Dept. Biochemistry and Molecular Biology I, School of Biology, Complutense University-CIBERNED-IRYCIS, Madrid, Spain
    Search for articles by this author
  • Cristina Sánchez
    Corresponding author. Address: Dept. Biochemistry and Molecular Biology I, School of Biology, Complutense University, C/ José Antonio Novais, 2, 28040 Madrid, Spain. Tel.: +34 913944668; fax: +34 913944672.
    Dept. Biochemistry and Molecular Biology I, School of Biology, Complutense University-CIBERNED-IRYCIS, Madrid, Spain
    Search for articles by this author
  • Author Footnotes
    a Present address: Dept. Pathology, University of Cambridge, Cambridge, UK.


      Breast cancer is a very common disease that affects approximately 1 in 10 women at some point in their lives. Importantly, breast cancer cannot be considered a single disease as it is characterized by distinct pathological and molecular subtypes that are treated with different therapies and have diverse clinical outcomes. Although some highly successful treatments have been developed, certain breast tumors are resistant to conventional therapies and a considerable number of them relapse. Therefore, new strategies are urgently needed, and the challenge for the future will most likely be the development of individualized therapies that specifically target each patient’s tumor. Experimental evidence accumulated during the last decade supports that cannabinoids, the active components of Cannabis sativa and their derivatives, possess anticancer activity. Thus, these compounds exert anti-proliferative, pro-apoptotic, anti-migratory and anti-invasive actions in a wide spectrum of cancer cells in culture. Moreover, tumor growth, angiogenesis and metastasis are hampered by cannabinoids in xenograft-based and genetically-engineered mouse models of cancer. This review summarizes our current knowledge on the anti-tumor potential of cannabinoids in breast cancer, which suggests that cannabinoid-based medicines may be useful for the treatment of most breast tumor subtypes.


      To read this article in full you will need to make a payment
      ESMO Member Login
      Login with your ESMO username and password.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Gaoni Y.
        • Mechoulam R.
        Isolation, structure and partial synthesis of an active constituent of hashish.
        J Am Chem Soc. 1964; 86: 1646-1647
        • Pacher P.
        • Batkai S.
        • Kunos G.
        The endocannabinoid system as an emerging target of pharmacotherapy.
        Pharmacol Rev. 2006; 58: 389-462
        • Matsuda L.A.
        • Lolait S.J.
        • Brownstein M.J.
        • et al.
        Structure of a cannabinoid receptor and functional expression of the cloned cDNA.
        Nature. 1990; 346: 561-564
        • Devane W.A.
        • Hanus L.
        • Breuer A.
        • et al.
        Isolation and structure of a brain constituent that binds to the cannabinoid receptor.
        Science. 1992; 258: 1946-1949
        • Mechoulam R.
        • Ben-Shabat S.
        • Hanus L.
        • et al.
        Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors.
        Biochem Pharmacol. 1995; 50: 83-90
        • Sugiura T.
        • Kondo S.
        • Sukagawa A.
        • et al.
        2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain.
        Biochem Biophys Res Commun. 1995; 215: 89-97
        • Munro S.
        • Thomas K.L.
        • Abu-Shaar M.
        Molecular characterization of a peripheral receptor for cannabinoids.
        Nature. 1993; 365: 61-65
        • Pertwee R.G.
        • Howlett A.C.
        • Abood M.E.
        • et al.
        International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB and CB.
        Pharmacol Rev. 2010; 62: 588-631
        • Machado Rocha F.C.
        • Stefano S.C.
        • De Cassia Haiek R.
        • et al.
        Therapeutic use of Cannabis sativa on chemotherapy-induced nausea and vomiting among cancer patients: systematic review and meta-analysis.
        Eur J Cancer Care (Engl). 2008; 17: 431-443
        • Velasco G.
        • Sánchez C.
        • Guzmán M.
        Towards the use of cannabinoids as antitumour agents.
        Nat Rev Cancer. 2012;
        • DeSantis C.
        • Siegel R.
        • Bandi P.
        • et al.
        Breast cancer statistics, 2011.
        CA Cancer J Clin. 2011; 61: 409-418
        • Foulkes W.D.
        • Smith I.E.
        • Reis-Filho J.S.
        Triple-negative breast cancer.
        N Engl J Med. 2010; 363: 1938-1948
        • Higgins M.J.
        • Baselga J.
        Targeted therapies for breast cancer.
        J Clin Invest. 2011; 121: 3797-3803
        • Nilsson S.
        • Koehler K.F.
        • Gustafsson J.A.
        Development of subtype-selective oestrogen receptor-based therapeutics.
        Nat Rev Drug Discov. 2011; 10: 778-792
        • De Petrocellis L.
        • Melck D.
        • Palmisano A.
        • et al.
        The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation.
        Proc Natl Acad Sci U S A. 1998; 95: 8375-8380
        • Melck D.
        • Rueda D.
        • Galve-Roperh I.
        • et al.
        Involvement of the cAMP/protein kinase A pathway and of mitogen-activated protein kinase in the anti-proliferative effects of anandamide in human breast cancer cells.
        FEBS Lett. 1999; 463: 235-240
        • Melck D.
        • De Petrocellis L.
        • Orlando P.
        • et al.
        Suppression of nerve growth factor Trk receptors and prolactin receptors by endocannabinoids leads to inhibition of human breast and prostate cancer cell proliferation.
        Endocrinology. 2000; 141: 118-126
        • Caffarel M.M.
        • Moreno-Bueno G.
        • Cerutti C.
        • et al.
        JunD is involved in the antiproliferative effect of Delta(9)-tetrahydrocannabinol on human breast cancer cells.
        Oncogene. 2008; 27: 5033-5044
        • Caffarel M.M.
        • Sarrio D.
        • Palacios J.
        • et al.
        Delta9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation.
        Cancer Res. 2006; 66: 6615-6621
        • Nasser M.W.
        • Qamri Z.
        • Deol Y.S.
        • et al.
        Crosstalk between chemokine receptor CXCR4 and cannabinoid receptor CB2 in modulating breast cancer growth and invasion.
        PLoS One. 2011; 6: e23901
        • Zlotnik A.
        • Burkhardt A.M.
        • Homey B.
        Homeostatic chemokine receptors and organ-specific metastasis.
        Nat Rev Immunol. 2011; 11: 597-606
        • Zhang H.
        • Berezov A.
        • Wang Q.
        • et al.
        ErbB receptors: from oncogenes to targeted cancer therapies.
        J Clin Invest. 2007; 117: 2051-2058
        • Caffarel M.M.
        • Andradas C.
        • Mira E.
        • et al.
        Cannabinoids reduce ErbB2-driven breast cancer progression through Akt inhibition.
        Mol Cancer. 2010; 9: 196
        • Ursini-Siegel J.
        • Schade B.
        • Cardiff R.D.
        • et al.
        Insights from transgenic mouse models of ERBB2-induced breast cancer.
        Nat Rev Cancer. 2007; 7: 389-397
        • Pertwee R.G.
        Emerging strategies for exploiting cannabinoid receptor agonists as medicines.
        Br J Pharmacol. 2009; 156: 397-411
        • Laezza C.
        • Pisanti S.
        • Crescenzi E.
        • et al.
        Anandamide inhibits Cdk2 and activates Chk1 leading to cell cycle arrest in human breast cancer cells.
        FEBS Lett. 2006; 580: 6076-6082
        • Ligresti A.
        • Moriello A.S.
        • Starowicz K.
        • et al.
        Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma.
        J Pharmacol Exp Ther. 2006; 318: 1375-1387
        • McAllister S.D.
        • Christian R.T.
        • Horowitz M.P.
        • et al.
        Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells.
        Mol Cancer Ther. 2007; 6: 2921-2927
        • McAllister S.D.
        • Murase R.
        • Christian R.T.
        • et al.
        Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell proliferation, invasion, and metastasis.
        Breast Cancer Res Treat. 2011;
        • Qamri Z.
        • Preet A.
        • Nasser M.W.
        • et al.
        Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer.
        Mol Cancer Ther. 2009; 8: 3117-3129
        • Shrivastava A.
        • Kuzontkoski P.M.
        • Groopman J.E.
        • et al.
        Cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy.
        Mol Cancer Ther. 2011; 10: 1161-1172
        • Grimaldi C.
        • Pisanti S.
        • Laezza C.
        • et al.
        Anandamide inhibits adhesion and migration of breast cancer cells.
        Exp Cell Res. 2006; 312: 363-373
        • Laezza C.
        • Pisanti S.
        • Malfitano A.M.
        • et al.
        The anandamide analog, Met-F-AEA, controls human breast cancer cell migration via the RHOA/RHO kinase signaling pathway.
        Endocr Relat Cancer. 2008; 15: 965-974
        • Hoellen F.
        • Kelling K.
        • Dittmer C.
        • et al.
        Impact of cyclooxygenase-2 in breast cancer.
        Anticancer Res. 2011; 31: 4359-4367
        • Jaffe A.B.
        • Hall A.
        Rho GTPases: biochemistry and biology.
        Annu Rev Cell Dev Biol. 2005; 21: 247-269
        • Narumiya S.
        • Tanji M.
        • Ishizaki T.
        Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion.
        Cancer Metastasis Rev. 2009; 28: 65-76
        • Hall A.
        The cytoskeleton and cancer.
        Cancer Metastasis Rev. 2009; 28: 5-14
        • Izzo A.A.
        • Borrelli F.
        • Capasso R.
        • et al.
        Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb.
        Trends Pharmacol Sci. 2009; 30: 515-527
        • Massi P.
        • Solinas M.
        • Cinquina V.
        • et al.
        Cannabidiol as potential anticancer drug.
        Br J Clin Pharmacol. 2012;
        • Bisogno T.
        • Hanus L.
        • De Petrocellis L.
        • et al.
        Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide.
        Br J Pharmacol. 2001; 134: 845-852
        • Salazar M.
        • Carracedo A.
        • Salanueva I.J.
        • et al.
        Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells.
        J Clin Invest. 2009;
        • Carracedo A.
        • Gironella M.
        • Lorente M.
        • et al.
        Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes.
        Cancer Res. 2006; 66: 6748-6755
        • Vara D.
        • Salazar M.
        • Olea-Herrero N.
        • et al.
        Anti-tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK-dependent activation of autophagy.
        Cell Death Differ. 2011; 18: 1099-1111
        • Oesch S.
        • Walter D.
        • Wachtel M.
        • et al.
        Cannabinoid receptor 1 is a potential drug target for treatment of translocation-positive rhabdomyosarcoma.
        Mol Cancer Ther. 2009; 8: 1838-1845
        • Gustafsson K.
        • Christensson B.
        • Sander B.
        • et al.
        Cannabinoid receptor-mediated apoptosis induced by R(+)-methanandamide and Win, 55,212-2 is associated with ceramide accumulation and p38 activation in mantle cell lymphoma.
        Mol Pharmacol. 2006; 70: 1612-1620
        • Massi P.
        • Vaccani A.
        • Bianchessi S.
        • et al.
        The non-psychoactive cannabidiol triggers caspase activation and oxidative stress in human glioma cells.
        Cell Mol Life Sci. 2006; 63: 2057-2066
        • McKallip R.J.
        • Jia W.
        • Schlomer J.
        • et al.
        Cannabidiol-induced apoptosis in human leukemia cells: a novel role of cannabidiol in the regulation of p22phox and Nox4 expression.
        Mol Pharmacol. 2006; 70: 897-908
        • McKallip R.J.
        • Nagarkatti M.
        • Nagarkatti P.S.
        Delta-9-tetrahydrocannabinol enhances breast cancer growth and metastasis by suppression of the antitumor immune response.
        J Immunol. 2005; 174: 3281-3289
        • Zhu L.X.
        • Sharma S.
        • Stolina M.
        • et al.
        Delta-9-tetrahydrocannabinol inhibits antitumor immunity by a CB2 receptor-mediated, cytokine-dependent pathway.
        J Immunol. 2000; 165: 373-380
        • Gardner B.
        • Zhu L.X.
        • Sharma S.
        • et al.
        Methanandamide increases COX-2 expression and tumor growth in murine lung cancer.
        FASEB J. 2003; 17: 2157-2159
        • Blazquez C.
        • Carracedo A.
        • Barrado L.
        • et al.
        Cannabinoid receptors as novel targets for the treatment of melanoma.
        FASEB J. 2006; 20: 2633-2635
        • Chan P.C.
        • Sills R.C.
        • Braun A.G.
        • et al.
        Toxicity and carcinogenicity of delta 9-tetrahydrocannabinol in Fischer rats and B6C3F1 mice.
        Fundam Appl Toxicol. 1996; 30: 109-117
        • Takeda S.
        • Yamamoto I.
        • Watanabe K.
        Modulation of Delta9-tetrahydrocannabinol-induced MCF-7 breast cancer cell growth by cyclooxygenase and aromatase.
        Toxicology. 2009; 259: 25-32
        • Takeda S.
        • Yamaori S.
        • Motoya E.
        • et al.
        Delta(9)-Tetrahydrocannabinol enhances MCF-7 cell proliferation via cannabinoid receptor-independent signaling.
        Toxicology. 2008; 245: 141-146
        • Sulcova E.
        • Mechoulam R.
        • Fride E.
        Biphasic effects of anandamide.
        Pharmacol Biochem Behav. 1998; 59: 347-352
        • Calatozzolo C.
        • Salmaggi A.
        • Pollo B.
        • et al.
        Expression of cannabinoid receptors and neurotrophins in human gliomas.
        Neurol Sci. 2007; 28: 304-310
        • Ellert-Miklaszewska A.
        • Grajkowska W.
        • Gabrusiewicz K.
        • et al.
        Distinctive pattern of cannabinoid receptor type II (CB2) expression in adult and pediatric brain tumors.
        Brain Res. 2007; 1137: 161-169
        • Sanchez C.
        • de Ceballos M.L.
        • Gomez del Pulgar T.
        • et al.
        Inhibition of glioma growth in vivo by selective activation of the CB(2) cannabinoid receptor.
        Cancer Res. 2001; 61: 5784-5789
        • Fowler C.J.
        • Hammarsten P.
        • Bergh A.
        Tumour Cannabinoid CB(1) receptor and phosphorylated epidermal growth factor receptor expression are additive prognostic markers for prostate cancer.
        PLoS One. 2010; 5: e15205
        • Gustafsson S.B.
        • Palmqvist R.
        • Henriksson M.L.
        • et al.
        High tumour cannabinoid CB1 receptor immunoreactivity negatively impacts disease-specific survival in stage II microsatellite stable colorectal cancer.
        PLoS One. 2011; 6: e23003
        • Zheng D.
        • Bode A.M.
        • Zhao Q.
        • et al.
        The cannabinoid receptors are required for ultraviolet-induced inflammation and skin cancer development.
        Cancer Res. 2008; 68: 3992-3998
        • Wang D.
        • Wang H.
        • Ning W.
        • et al.
        Loss of cannabinoid receptor 1 accelerates intestinal tumor growth.
        Cancer Res. 2008; 68: 6468-6476
        • Carracedo A.
        • Lorente M.
        • Egia A.
        • et al.
        The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells.
        Cancer Cell. 2006; 9: 301-312
        • Galve-Roperh I.
        • Sanchez C.
        • Cortes M.L.
        • et al.
        Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation.
        Nat Med. 2000; 6: 313-319
        • Casanova M.L.
        • Blazquez C.
        • Martinez-Palacio J.
        • et al.
        Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors.
        J Clin Invest. 2003; 111: 43-50
        • Grotenhermen F.
        The toxicology of cannabis and cannabis prohibition.
        Chem Biodivers. 2007; 4: 1744-1769
        • Portenoy R.K.
        • Ganae-Motan E.D.
        • Allende S.
        • et al.
        Nabiximols for opioid-treated cancer patients with poorly-controlled chronic pain: a randomized, placebo-controlled, graded-dose trial.
        J Pain. 2012;
        • Wade D.T.
        • Collin C.
        • Stott C.
        • et al.
        Meta-analysis of the efficacy and safety of Sativex (nabiximols), on spasticity in people with multiple sclerosis.
        Mult Scler. 2010; 16: 707-714
        • Guzman M.
        Cannabinoids: potential anticancer agents.
        Nat Rev Cancer. 2003; 3: 745-755
        • Robson P.
        Abuse potential and psychoactive effects of delta-9-tetrahydrocannabinol and cannabidiol oromucosal spray (Sativex), a new cannabinoid medicine.
        Expert Opin Drug Saf. 2011; 10: 675-685
        • Torres S.
        • Lorente M.
        • Rodriguez-Fornes F.
        • et al.
        A combined preclinical therapy of cannabinoids and temozolomide against glioma.
        Mol Cancer Ther. 2011; 10: 90-103
        • Donadelli M.
        • Dando I.
        • Zaniboni T.
        • et al.
        Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism.
        Cell Death Dis. 2011; 2: e152
        • Miyato H.
        • Kitayama J.
        • Yamashita H.
        • et al.
        Pharmacological synergism between cannabinoids and paclitaxel in gastric cancer cell lines.
        J Surg Res. 2009; 155: 40-47
        • Gustafsson S.B.
        • Lindgren T.
        • Jonsson M.
        • et al.
        Cannabinoid receptor-independent cytotoxic effects of cannabinoids in human colorectal carcinoma cells: synergism with 5-fluorouracil.
        Cancer Chemother Pharmacol. 2009; 63: 691-701
        • Marcu J.P.
        • Christian R.T.
        • Lau D.
        • et al.
        Cannabidiol enhances the inhibitory effects of delta9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival.
        Mol Cancer Ther. 2010; 9: 180-189