Cancer stem cells hypothesis and stem cells in head and neck cancers

  • Giuditta Mannelli
    Correspondence
    Corresponding author. Fax: +39 055435649.
    Affiliations
    First University Clinic of Otorhinolaryngology-Head and Neck Surgery, Director Prof. Oreste Gallo, University of Florence, Azienda Ospedaliera Universitaria Careggi, Via Largo Brambilla 3, 50134 Firenze, Italy
    Search for articles by this author
  • Oreste Gallo
    Affiliations
    First University Clinic of Otorhinolaryngology-Head and Neck Surgery, Director Prof. Oreste Gallo, University of Florence, Azienda Ospedaliera Universitaria Careggi, Via Largo Brambilla 3, 50134 Firenze, Italy
    Search for articles by this author
Published:December 26, 2011DOI:https://doi.org/10.1016/j.ctrv.2011.11.007

      Summary

      There is increasing evidence that the growth and spread of cancer is driven by a small subpopulation of cancer cells, defined as cancer stem cells (CSCs). Recent data indicate that the initiation, growth, recurrence and metastasis of cancers are related to the behavior of a small population of malignant cells with properties of stem cells, and information about them are potentially helpful in identifying the target for the tumor’s therapeutic elimination. The presence of subpopulation cells with phenotypic and behavioral characteristics corresponding to both normal epithelial stem cells and to cells capable of initiating tumors has been also reported in head and neck squamous cell carcinomas (HNSCCs).

      Keywords

      To read this article in full you will need to make a payment

      References

        • Locke M.
        • Heywood M.
        • Fawell S.
        • Mackenzie I.C.
        Retention of intrinsic stem cells hierarchies in carcinoma-derived cell line.
        Cancer Res. 2005; 65: 8944-8950
        • Reya T.
        • Morrison S.J.
        • Clarke M.F.
        • Weissman I.L.
        Stem cells, cancer and cancer stem cells.
        Nature. 2001; 414: 105-111
        • Garcia S.B.
        • Novelli M.
        • Wright N.A.
        The clonal origin and clonal evolution of epithelial tumours.
        Int J Exp Pathol. 2000; 81: 89-116
        • Morris R.J.
        • Fisher S.M.
        • Slaga T.J.
        Evidence that a slowly cycling subpopulation of adult murine epidermal cells retains carcinogen.
        Cancer Res. 1986; 46: 3061-3066
        • Morris R.J.
        Keratinocyte stem cells: targets for cutaneous carcinogens.
        J Clin Invest. 2000; 106: 3-8
        • Delerba P.
        • Cho R.W.
        • Clarke M.F.
        Cancer stem cells: models and concepts.
        Annu Rev Med. 2007; 58: 267-284
        • Clarke M.F.
        • Fuller M.
        Stem cells and cancer: two faces of eve.
        Cell. 2006; 124: 1111-1115
        • LS Whicha.M.S.
        • Dontu G.
        Cancer stem cells.
        An old idea. A paradigm shift. Cancer Res. 2006; 66: 1883-1890
        • Pardal R.
        • Clarke M.F.
        • Morrison S.J.
        Applaying the principles of stem-cell biology to cancer.
        Nat Rev Cancer. 2003; 3: 895-902
        • Parkin D.M.
        • Bray F.
        • Ferlay J.
        • Pisani P.
        Global cancer statistics 2002.
        CA Cancer J Clin. 2005; 55: 74-108
        • Jemal A.
        • Siegel R.
        • Ward E.
        • Hao Y.
        • Xu J.
        • Thun M.J.
        Cancer statistics, 2009.
        CA Cancer J Clin. 2009; 59: 225-249
        • Prince M.E.P.
        • Ailles L.E.
        Cancer stem cells in head and neck squamous cell cancer.
        J Clin Oncol review article. 2008; 26: 2871-2875
        • Muir C.
        • Weiland L.
        Upper aerodigestive tract cancers. Cancer. 1995; 75: 147-153
        • Parkin D.M.
        • Pisani P.
        • Ferlay J.
        Estimates of the worldwide incidence of 25 major cancers in 1990.
        Int J Cancer. 1999; 80: 827-841
        • Dobrossy L.
        Epidemiology of head and neck cancer: magnitude of the problem.
        Cancer Metastasis Rev. 2005; 24: 9-17
      1. Molinari. I tumori epiteliali del testa collo, in Basi scientifiche per linee guida; 1999.

      2. Monge R, Head and neck cancer, a comprehensive review. M.D. Anderson Cancer Center Guidelines; 1997.

        • Sturgis E.M.
        • Wei Q.
        • Spitz M.R.
        Descriptive epidemiology and risk factors for head and neck cancer.
        Semin Oncol. 2004; 31: 726-733
        • Zhang Z.F.
        Environmental tobacco smoking, mutagen sensitivity, and head and neck squamous cell carcinoma.
        Cancer Epi Bio and Prev. 2000; 9: 1043-1049
      3. Albers AE, Chen C, Koberle B, et al. Stem cells in squamous head and neck cancer. Crit Rev Oncol/Hematol 2011 [Epub ahead of print].

        • Ginos M.A.
        • Page G.P.
        • Michalowicz B.S.
        • et al.
        Identification of a gene expression signature associated with recurrent disease in squamous cell carcinoma of the head and neck.
        Cancer Res. 2004; 64: 55-63
        • Scadden D.T.
        The stem-cell niche as an entity of action.
        Nature. 2006; 441: 1075-1079
        • Hamburger A.W.
        • Salmon S.E.
        Primary bioassay of human tumor stem cells.
        Science. 1977; 197: 461-463
        • Al-Hajj M.
        • Wicha M.S.
        • Benito-Hernandez A.
        • Morrison S.J.
        • Clarke M.F.
        Prospective identification of tumorigenic breast cancer cells.
        Proc Natl Acad Sci USA. 2003; 100: 3983-3988
        • Wicha M.S.
        • Liu S.
        • Dontu G.
        Cancer stem cells: an old idea-a paradigm shift.
        Cancer Res. 2006; 66: 1883-1890
        • Bruce W.R.
        • Van Der Gaag H.
        A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo.
        Nature. 1963; 199: 79-80
        • Kleinsmith L.J.
        • Pierce Jr., G.B.
        Multipotentiality of single embryonal carcinoma cells.
        Cancer Res. 1964; 24: 1544-1551
        • Park C.H.
        • Bergsagel D.E.
        • McCulloch E.A.
        Mouse myeloma tumor stem cells: a primary cell culture assay.
        J Natl Cancer Inst. 1971; 46: 411-422
        • Lapidot T.
        • Sirard C.
        • Vormoor J.
        • et al.
        A cell initiating human acute myeloid leukaemia after transplantation into SCID mice.
        Nature. 1994; 367: 645-648
        • Bonnet D.
        • Dick J.E.
        Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.
        Nat Med. 1997; 3: 730-737
        • Collins A.T.
        • Berry P.A.
        • Hyde C.
        • Stower M.J.
        • Maitland N.J.
        Prospective identification of tumorigenic prostate cancer stem cells.
        Cancer Res. 2005; 65: 10946-10951
        • Kim C.F.
        • Jackson E.L.
        • Woolfenden A.E.
        • et al.
        Identification of bronchioalveolar stem cells in normal lung and lung cancer.
        Cell. 2005; 121: 823-835
        • Dalerba P.
        • Dylla S.J.
        • Park I.K.
        • et al.
        Phenotypic characterization of human colorectal cancer stem cells.
        Proc Natl Acad Sci USA. 2007; 104: 10158-10163
        • Li C.
        • Heidt D.G.
        • Dalerba P.
        • et al.
        Identification of pancreatic cancer stem cells.
        Cancer Res. 2007; 67: 1030-1037
        • Prince M.E.
        • Sivanandan R.
        • Kaczorowski A.
        • et al.
        Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma.
        Proc Natl Acad Sci USA. 2007; 104: 973-978
        • Malek S.
        • Kaplan E.
        • Wang J.F.
        • et al.
        Successful implantation of intravenously administered stem cells correlates with severity of inflammation in murine myocarditis.
        Pflugers Arch. 2006; 452: 268-275
        • Takaishi S.
        • Okumura T.
        • Wang T.C.
        Gastric cancer stem cells.
        J Clin Oncol. 2008; 26 ([review]): 2876-2882
        • Houghton J.
        • Wang T.C.
        Helicobacter pylori and gastric cancer: a new paradigm for inflammation-associated epithelial cancers.
        Gastroenterology. 2005; 128: 1567-1578
        • Kaplan R.N.
        • Psaila B.
        • Lyden D.
        Niche-to-niche migration of bone-marrow-derived cells.
        Trends Mol Med. 2007; 13: 72-81
        • Kemp K.C.
        • Hows J.
        • Donaldson C.
        Bone marrow-derived mesenchymal stem cells.
        Leuk Lymphoma. 2005; 46: 1531-1544
        • Bristow R.G.
        • Hill R.P.
        Hypoxia, DNA repair and genetic instability.
        Nat Rev Cancer. 2008; 8: 180-192
        • Sun Q.
        • Li X.
        • Lu X.
        • Di B.
        Cancer stem cells may be mostly maintained by fluctuating hypoxia.
        Med Hypotheses. 2011; 76: 471-473
        • Spillane J.B.
        • Henderson M.A.
        Cancer stem cells: a review.
        ANZ J Surg. 2007; 77: 464-468
        • Dontu G.
        • El-Ashry D.
        • Wicha M.S.
        Breast cancer, stem/progenitor cells and the estrogen receptor.
        Trends Endocrinol Metab. 2004; 15: 193-197
        • Ezeh U.I.
        • Turek P.J.
        Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma.
        Cancer. 2005; 104: 2255-2265
        • Squier C.A.
        • Kremer M.J.
        Biology of oral mucosa and esophagus.
        J Natl Cancer Inst Monogr. 2001; 29: 7-15
        • Lara-Hernandez R.
        • Lozano-Vilardell P.
        • Blanes P.
        • Torreguitart-Mirada N.
        • Galmés A.
        • Besalduch J.
        Safety and efficacy of therapeutic angiogenesis as a novel treatment in patients with critical limb ischemia.
        Ann Vasc Surg. 2010; 24: 287-294
        • Flores-Ramírez R.
        • Uribe-Longoria A.
        • Rangel-Fuentes M.M.
        • et al.
        Intracoronary infusion of CD133+ endothelial progenitor cells improves heart function and quality of life in patients with chronic post-infarct heart insufficiency.
        Cardiovasc Revasc Med. 2010; 11: 72-78
        • Cotsarelis G.
        • Kaur P.
        • Dhouailly D.
        • Hengge U.
        • Bickenbach J.
        Epithelial stem cells in the skin: definition, markers, localization and functions.
        Exp Dermatol. 1999; 8: 80-88
        • Mizrak D.
        • Brittan M.
        • Alison M.R.
        CD133: molecule of the moment.
        J Pathol. 2008; 214: 3-9
        • Singh S.K.
        • Hawkins C.
        • Clarke I.D.
        • et al.
        Identification of human brain tumour initiating cells.
        Nature. 2004; 432: 396-401
        • Taylor M.D.
        • Poppleton H.
        • Fuller C.
        • et al.
        Radial glia cells are candidate stem cells of ependymoma.
        Cancer Cell. 2005; 8: 323-335
        • Calabrese C.
        • Poppleton H.
        • Kocak M.
        • Hogg T.L.
        • Fuller C.
        • Hamner B.
        A perivascular niche for brain tumor stem cells.
        Cancer Cell. 2007; 11: 69-82
        • Wu A.
        • Oh S.
        • Wiesner S.M.
        • Ericson K.
        • Chen L.
        • Hall W.A.
        Persistence of CD133+ cells in human and mouse glioma cell lines: detailed characterization of GL261 glioma cells with cancer stem cell-like properties.
        Stem Cells Dev. 2008; 17: 173-184
        • Miki J.
        • Furusato B.
        • Li H.
        • et al.
        Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens.
        Cancer Res. 2007; 67: 3153-3161
        • Olempska M.
        • Eisenach P.A.
        • Ammerpohl O.
        • et al.
        Detection of tumor stem cell markers in pancreatic carcinoma cell lines.
        Hepatobiliary Pancreat Dis Int. 2007; 6: 92-97
        • O’Brien C.A.
        • Pollett A.
        • Gallinger S.
        • Dick J.E.
        A human colon cancer cell capable of initiating tumour growth in immunodeficient mice.
        Nature. 2007; 445: 106-110
        • Ricci-Vitiani L.
        • Lombardi D.G.
        • Pilozzi E.
        • et al.
        Identification and expansion of human colon-cancer -initiating cells.
        Nature. 2007; 445: 111-115
        • Suetsugu A.
        • Nagaki M.
        • Aoki H.
        • Motohashi T.
        • Kunisada T.
        • Moriwaki H.
        Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells.
        Biochem Biophys Res Commun. 2006; 351: 820-824
        • Yin S.
        • Li J.
        • Hu C.
        • Chen X.
        • Yao M.
        • Yan M.
        CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity.
        Int J Cancer. 2007; 120: 1444-1450
        • Frank N.Y.
        • Margaryan A.
        • Huang Y.
        • et al.
        ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma.
        Cancer Res. 2005; 65: 4320-4333
        • Klein W.M.
        • Wu B.P.
        • Zhao S.
        • Wu H.
        • Klein-Szanto A.J.
        • Tahan S.R.
        Increased expression of stem cell markers in malignant melanoma.
        Mod Pathol. 2007; 20: 102-107
        • Monzani E.
        • Facchetti F.
        • Galmozzi E.
        • et al.
        Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential.
        Eur J Cancer. 2007; 43: 935-946
        • Wright M.H.
        • Calcagno A.M.
        • Salcido C.D.
        • Carison M.D.
        • Ambudkar S.V.
        • Varticovski L.
        Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics.
        Breast Cancer Res. 2008; 10: R10
        • Eramo A.
        • Lotti F.
        • Sette G.
        • et al.
        Identification and expansion of the tumorigenic lung cancer stem cell population.
        Cell Death Differ. 2008; 15: 504-514
        • Zhou L.
        • Wei X.
        • Cheng L.
        • Tian J.
        • Jiang J.J.
        CD133, one of the markers of cancer stem cells in Hep-2 cell line.
        Laryngoscope. 2007; 117: 455-460
        • Tirino V.
        • Desiderio V.
        • d’Aquino R.
        • et al.
        Detection, characterization of CD133+ cancer stem cells in human solid tumours.
        PLoS One. 2008; 3: e3469
        • Cheng J.X.
        • Liu B.L.
        • Zhang X.
        How powerful is CD133 as a cancer stem cell marker in brain tumors?.
        Cancer Treatment Review. 2009; 35: 403-408
        • Yin A.H.
        • Miraglia S.
        • Zanjani E.D.
        • Almeida-Porada G.
        • Ogawa M.
        • Leary A.G.
        AC133, a novel marker for human hematopoietic stem and progenitor cells.
        Blood. 1997; 90: 5002-5012
        • Beckmann J.
        • Scheitza S.
        • Wernet P.
        • Fischer J.C.
        • Giebel B.
        Asymmetric cell division within the human hematopoietic stem and progenitor cell compartment: identification of asymmetrically segregating proteins.
        Blood. 2007; 109: 5494-5501
        • Wang J.
        • Sakariassen P.O.
        • Tsinkalovsky O.
        • et al.
        CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells.
        Int J Cancer. 2008; 122: 761-768
        • Beier D.
        • Hau P.
        • Proescholdt M.
        • et al.
        CD133(+) and CD133(_) glioblastomaderived cancer stem cell show differential growth characteristics and molecular profiles.
        Cancer Res. 2007; 67: 4010-4015
        • Joo K.M.
        • Kim S.Y.
        • Jin X.
        • Song S.Y.
        • Kong D.S.
        • Lee J.I.
        Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas.
        Lab Invest. 2008; 88: 808-815
        • Ogden A.T.
        • Waziri A.E.
        • Lochhead R.A.
        • Fusco D.
        • Lopez K.
        • Ellis J.A.
        Identification of A2B5+ tumor-initiating cells in adult human gliomas.
        Neurosurgery. 2008; 62 ([discussion 514–5]): 505-514
        • Srivastava V.K.
        • Nalbantoglu J.
        Flow cytometric characterization of the DAOY medulloblastoma cell line for the cancer stem-like phenotype.
        Cytometry A. 2008; 73: 940-948
        • Meng X.
        • Li M.
        • Wang X.
        • Wang Y.
        • Ma D.
        Both CD133+ and CD133- subpopulations of A549 and H446 cells contain cancer-initiating cells.
        Cancer Sci. 2009; 100: 2275-2282
        • Shipitsin M.
        • Campbell L.L.
        • Argani P.
        • et al.
        Molecular definition of breast tumor heterogeneity.
        Cancer Cell. 2007; 11: 259-273
        • Lesley J.
        • Hyman R.
        CD44 structure and function.
        Front Biosci. 1998; 3: d616-d630
        • Lesley J.
        • Hyman R.
        • Kincade P.W.
        CD44 and its interaction with extracellular matrix.
        Adv Immunol. 1993; 54: 271-335
        • Pirinen R.
        • Hirvikoski P.
        • Böhm J.
        • Kellokoski J.
        • Moisio K.
        • Virén M.
        Reduced expression of CD44v3 variant isoform is associated with unfavorable outcome in non-small cell lung carcinoma.
        Hum Pathol. 2000; 31: 1088-1095
        • Mizera-Nyczak E.
        • Dyszkiewicz W.
        • Heider K.H.
        • Zeromski J.
        Isoform expression of CD44 adhesion molecules, Bcl-2, p53 and Ki-67 proteins in lung cancer.
        Tumour Biol. 2001; 22: 45-53
        • Ni H.
        • Leong A.
        • Cheon D.
        • Hooi S.
        Expression of CD44 variants in colorectal carcinoma quantified by real-time reverse transcriptase-polymerase chain reaction.
        J Lab Clin Med. 2002; 139: 59-65
        • Lakshman M.
        • Subramaniam V.
        • Rubenthiran U.
        • Jothy S.
        CD44 promotes resistance to apoptosis in human colon cancer cells.
        Exp Mol Pathol. 2004; 77: 18-25
        • Kuhn S.
        • Koch M.
        • Nübel T.
        • Ladwein M.
        • Antolovic D.
        • Klingbeil P.
        A complex of EpCAM, claudin-7, CD44 variant isoforms, and tetraspanins promotes colorectal cancer progression.
        Mol Cancer Res. 2007; 5: 553-567
        • Kalish E.D.
        • Iida N.
        • Moffat F.L.
        • Bourguignon L.Y.
        A new CD44v3-containig isoform is involved in tumor cell growth and migration during human breast carcinoma progression.
        Front Biosci. 1999; 4: A1-A8
        • Bourguignon L.Y.
        • Zhu H.
        • Shao L.
        • Zhu D.
        • Chen Y.W.
        Rho-kinase (ROK) promotes CD44v(3, 8–10)-ankyrin interaction and tumor cell migration in metastatic breast cancer cells.
        Front Motil Cytoskeleton. 1999; 43: 269-287
        • Iida N.
        • Bourguignon L.Y.
        Co-expression of CD44 variant (v10/ex14) and CD44s in human mammary epithelial cells promotes tumorigenesis.
        J Cell Physiol. 1997; 171: 152-160
        • Knudson W.
        The role of CD44 as a cell surface hyaluronan receptor during tumor invasion of connective tissue.
        Front Biosci. 1998; 3: d604-d615
        • Hamada J.
        • Sawamura Y.
        • Van Meir E.G.
        CD44 expression and growth factors.
        Front Biosci. 1998; 3: d657-d664
        • Lim S.C.
        • Oh S.H.
        The role of CD24 in various human epithelial neoplasias.
        Pathol Res Pract. 2005; 201: 479-486
        • Lucinei R.O.
        • Jeffrey S.S.
        • Ribeiro-Silva A.
        Review, Stem cells in human breast cancer.
        Histol Histopathol. 2010; 25: 371-385
        • Hill A.
        • McFarlane S.
        • Johnston P.G.
        • Waugh D.J.
        The emerging role of CD44 in regulating skeletal micrometastasis.
        Cancer Lett. 2006; 237: 1-9
        • Shmelkov S.V.
        • Butler J.M.
        • Hooper A.T.
        • et al.
        CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors.
        J Clin Invest. 2008; 118: 2111-2120
        • Puglisi M.A.
        • Sgambato A.
        • Saulnier N.
        • Rafanelli F.
        • Barba M.
        • Boninsegna A.
        Isolation and characterization of CD133+ cell population within human primary and metastatic colon cancer.
        Eur Rev Med Pharmacol Sci. 2009; 13: 55-62
        • Botchkina I.L.
        • Rowehl R.A.
        • Rivadeneira D.E.
        • et al.
        Phenotypic subpopulation of metastatic colon cancer stem cells: genomic analysis.
        Cancer Genomic Proteomics. 2009; 6: 19-29
        • Kusumbe A.P.
        • Mali A.M.
        • Bapat S.A.
        CD133-expressing stem cells associated with ovarian metastases establish an endothelial hierarchy and contribute to tumor vasculature.
        Stem cells. 2009; 27: 498-508
        • Rowehl R.A.
        • Crawford H.
        • Dufour A.
        • Ju J.
        • Botchkina G.I.
        Genomic analysis of prostate cancer stem cells isolated from a highly metastatic cell line.
        Cancer Genomics Proteomics. 2008; 5: 301-310
        • Abraham B.K.
        • Fritz P.
        • McClellan M.
        • Hauptvogel P.
        • Athelogou M.
        • Brauch H.
        Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis.
        Clin Cancer Res. 2005; 11: 1154-1159
        • Ling L.J.
        • Wang S.
        • Liu X.A.
        • et al.
        A novel mouse model of human breast cancer stem-like cells with high CD44+CD24-/lower phenotype metastasis to human bone.
        Chin Med J. 2008; 121: 1980-1986
        • Sheridan C.
        • Kishimoto H.
        • Fuchs R.K.
        • et al.
        CD44+/CD24-breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis.
        Breast Cancer Res. 2006; 8: R59
        • Li G.
        • Liu C.
        • Yuan J.
        • et al.
        CD133(+) single cell-derived progenies of colorectal cancer cell line SW480 with different invasive and metastatic potential.
        Clin Exp Metastasis. 2010; 27: 517-527
        • Al Dhaybi R.
        • Sartelet H.
        • Powell J.
        • Kokta V.
        Expression of CD133+ cancer stem cells in childhood malignant melanoma and its correlation with metastasis.
        Mod Pathol. 2010; 23: 376-380
        • Bemmo A.
        • Dias C.
        • Rose A.A.
        • Russo C.
        • Siegel P.
        • Majewski J.
        Exon-level transcriptome profiling in murine breast cancer reveals splicing changes specific to tumors with different metastatic abilities.
        PLoS One. 2010; 5: e11981
        • Sato A.
        • Sakurada K.
        • Kumabe T.
        • et al.
        Association of stem cell marker CD133 expression with dissemination of glioblastomas.
        Neurosurg Rev. 2010; 33: 175-183
        • Choi D.
        • Lee H.W.
        • Hur K.Y.
        • et al.
        Cancer stem cell markers CD133 and CD24 correlate with invasiveness and differentiation in colorectal adenocarcinoma.
        World J Gastroenterol. 2009; 15: 2258-2264
        • Wang Q.
        • Chen Z.G.
        • Du C.Z.
        • Wang H.W.
        • Yan L.
        • Gu J.
        Cancer stem cell marker CD133+ tumour cells and clinical outcome in rectal cancer.
        Histopathology. 2009; 55: 284-293
        • Li C.Y.
        • Li B.X.
        • Liang Y.
        • et al.
        Higher percentage of CD133+ cells is associated with poor prognosis in colon carcinoma patients with stage IIIB.
        J Transl Med. 2009; 7: 56
        • Peng J.J.
        • Cai S.J.
        • Lu H.F.
        • et al.
        Predicting prognosis of rectal cancer patients with total mesorectal excision using molecular markers.
        World J Gastroenterol. 2007; 13: 3009-3015
        • Zhang M.
        • Song T.
        • Yang L.
        • et al.
        Nestin, CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients.
        J Exp Clin Cancer Res. 2008; 27: 85
        • Pallini R.
        • Ricci-Vitiani L.
        • Banna G.L.
        • et al.
        Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme.
        Clin Cancer Res. 2008; 14: 8205-8212
        • Montgomery E.
        • Abraham S.C.
        • Fisher C.
        • et al.
        CD44 loss in gastric stromal tumors as a prognostic marker.
        Am J Surg Pathol. 2004; 28: 168-177
        • Pacifico M.D.
        • Grover R.
        • Richman P.I.
        • Daley F.M.
        • Buffa F.
        • Wilson G.D.
        CD44v3 levels in primary cutaneous melanoma are predictive of prognosis: assessment by the use of tissue microarray.
        Int J Cancer. 2006; 118: 1460-1464
        • Diaz L.K.
        • Zhou X.
        • Wright E.T.
        • et al.
        CD44 expression is associated with increased survival in node-negative invasive breast carcinoma.
        Clin Cancer Res. 2005; 11: 3309-3314
        • Mylona E.
        • Giannopoulou I.
        • Fasomytakis E.
        • et al.
        The clinicopathologic and prognostic significance of CD44+/CD24(−/low) and CD44/CD24+ tumor cells in invasive breast carcinomas.
        Hum Pathol. 2008; 39: 1096-1102
        • Zhou L.
        • Jiang Y.
        • Yan T.
        • et al.
        The prognostic role of cancer stem cells in brest cancer: a meta-analysis of published literature.
        Breast Cancer Res Treat. 2010; 122: 795-801
        • Heyse T.J.
        • Malcherczyk D.
        • Moll R.
        • et al.
        CD44: survival and metastasis in chondrosarcoma.
        Osteoarthriis Cartilage. 2010; 18: 849-856
        • Gunia S.
        • May M.
        • Koch S.
        • Dietel M.
        • Erbersdobler A.
        Expression of CD44s in incidental prostate cancer in more strongly associated with Gleason score on subsequent radical prostatectomies than conventional prognostic parameters.
        Pathobiology. 2009; 76: 286-292
        • Ishigami S.
        • Ueno S.
        • Arigami T.
        • et al.
        Prognostic impact of CD133 expression in gastric carcinoma.
        Anticancer Res. 2010; 30: 2453-2457
        • Frank N.Y.
        • Pendse S.S.
        • Lapchak P.H.
        • et al.
        Regulation of progenitor cell fusion by ABCB5 P-glycoprotein, a novel human ATP-binding cassette transporter.
        J Biol Chem. 2003; 278: 47156-47165
        • Hambardzumyan D.
        • Squatrito M.
        • Holland E.C.
        Radiation resistance and stem-like cells in brain tumors.
        Cancer Cell. 2006; 10 ([Erratum in: Cancer Cell 2007;11:97]): 454-456
        • Hornsey S.
        The radiosensitivity of the intestine.
        Strahlenschutz Forsch Prax. 1973; 13: 78-88
        • Chang C.J.
        • Hsu C.C.
        • Yung M.C.
        • Chen K.Y.
        • Tzao C.
        • Wu W.F.
        • et al.
        Enhanced radiosensitivity and radiation-induced apoptosis in glioma CD133-positive cells by knockdown of SirT1 expression.
        Biochem Biophys Res Commun. 2009; 380: 236-242
        • Beier D.
        • Röhrl S.
        • Pillai D.R.
        • et al.
        Temozolomide preferentially depletes cancer stem cells in glioblastoma.
        Cancer Res. 2008; 68: 5706-5715
        • Murat A.
        • Migliavacca E.
        • Gorlia T.
        • et al.
        Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma.
        J Clin Oncol. 2008; 26: 3015-3024
        • Yasuda H.
        • Tanaka K.
        • Saigusa S.
        • et al.
        Elevated CD133, but not VEGF or EGFR, as a predictive marker of distant recurrence after preoperative chemoradiotherapy in rectal cancer.
        Oncol Rep. 2009; 22: 709-717
        • Saigusa S.
        • Tanaka K.
        • Toiyama Y.
        • et al.
        Correlation of CD133, OCT4, and SOX2 in rectal cancer and their association with distant recurrence after chemoradiotherapy.
        Ann Surg Oncol. 2009; 16: 3488-3498
        • Phillips T.M.
        • McBride W.H.
        • Pajonk F.
        The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation.
        J Natl Cancer Inst. 2006; 98: 1777-1785
        • Ohashi R.
        • Takahashi F.
        • Cui R.
        • et al.
        Interaction between CD44 and hyaluronate induces chemoresistance in non-small cell lung cancer cell.
        Cancer Lett. 2007; 252: 225-234
        • Alvero A.B.
        • Chen R.
        • Fu H.H.
        • et al.
        Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance.
        Cell Cycle. 2009; 8: 158-166
        • Parenteau N.L.
        • Biblo P.
        • Nolte C.J.
        • Mason V.S.
        • Rosenberg M.
        The organotypic culture of human skin keratinocytes and fibroblasts to achieve form and function.
        Cytotecnology. 1992; 9: 163-171
        • Kautsky M.B.
        • Fleckman P.
        • Dale B.A.
        Retinoic acid regulates oral epithelial differentiation by two mechanisms.
        J Invest Dermatol. 1995; 104: 546-553
        • Igarashi M.
        • Irwin C.
        • Locke M.
        • Mackenzie I.C.
        Construction of large area organotypical cultures of oral mucosa and skin.
        J Oral Pathol Med. 2002; 32: 422-430
        • Chen Y.C.
        • Chen Y.W.
        • Hsu H.S.
        • Tseng L.M.
        • Huang P.I.
        • Lu K.H.
        Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer.
        Biochem Biophys Res Commun. 2009; 385: 307-313
        • Lagadec C.
        • Vlashi E.
        • Della Donna L.
        • et al.
        Survival, self-renewing capacity of breast cancer initiating cells during fractionated radiation treatment.
        Breast Cancer Res. 2010; 12: R13
        • Mack B.
        • Gires O.
        CD44s and CD44v6 expression in head and neck epithelia.
        PLoS One. 2008; 3: e3360
        • Wang S.J.
        • Wong G.
        • de Heer A.M.
        • Xia W.
        • Bourguignon L.Y.
        CD44 variant isoforms in head and neck squamous cell carcinoma progression.
        Laryngoscope. 2009; 119: 1518-1530
        • Wei X.D.
        • Zhou L.
        • Cheng L.
        • Tian J.
        • Jiang J.J.
        • Maccallum J.
        In vivo investigation of CD133 as a putative marker of cancer stem cells in Hep-2 cell line.
        Head Neck. 2009; 31: 94-101
        • Okamoto A.
        • Chikamatsu K.
        • Sakakura K.
        • Hatsushika K.
        • Takahashi G.
        • Masuyama K.
        Expansion and characterization of cancer stem-like cells in squamous cell carcinoma of the head and neck.
        Oral Oncol. 2009; 45: 633-639
        • Riechelmann H.
        • Sauter A.
        • Golze W.
        • et al.
        Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma.
        Oral Oncol. 2008; 44: 823-829
        • Zhang Q.
        • Shi S.
        • Yen Y.
        • Brown J.
        • Ta J.Q.
        • Le A.D.
        A subpopulation of CD133(+)cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy.
        Cancer Lett. 2010; 289: 151-160
        • Sun G.
        • Fujii M.
        • Sonoda A.
        • Tokumaru Y.
        • Matsunaga T.
        • Habu N.
        Identification of stem-like cells in head and neck cancer cell lines.
        Anticancer Res. 2010; 30: 2005-2010
        • Orian-Rousseau V.
        CD44, a therapeutic target for metastasising tumours.
        Eur J Cancer. 2010; 46: 1271-1277
        • Torre C.
        • Wang S.J.
        • Xia W.
        • Bourguignon L.Y.
        Reduction of hyaluronan-CD44-mediated growth, migration, and cisplatin resistance in head and neck cancer due to inhibition of Rho kinase and PI-3 kinase signaling.
        Arch Otolaryngol Head Neck Surg. 2010; 136: 493-501
        • Bates R.C.
        • Edwards N.S.
        • Burns G.F.
        • Fisher D.E.
        A CD44 survival pathway triggers chemoresistance via lyn kinase and phosphoinositide 3-kinase/Akt in colon carcinoma cells.
        Cancer Res. 2001; 61: 5275-5283
        • Yu H.G.
        • Ai Y.W.
        • Yu L.L.
        • et al.
        Phosphoinositide 3-kinase/Akt pathway plays an important role in chemoresistance of gastric cancer cells against etoposide and doxorubicin induced cell death.
        Int J Cancer. 2008; 122: 433-443
        • Yang X.
        • Fraser M.
        • Moll U.M.
        • Basak A.
        • Tsang B.K.
        Akt-mediated cisplatin resistance in ovarian cancer: modulation of p53 action on caspase dependent mitochondrial death pathway.
        Cancer Res. 2006; 66: 3126-3136
        • Gagnon V.
        • Mathieu I.
        • Sexton E.
        • Leblanc K.
        • Asselin E.
        AKT involvement in cisplatin chemoresistance of human uterine cancer cells.
        Gynecol Oncol. 2004; 94: 785-795
        • Javaherian A.
        • Vaccariello M.
        • Fusenig N.E.
        • Garlick J.A.
        Normal keratinocytes suppress early stages of neoplastic progression in stratified epithelium.
        Cancer Res. 1998; 58: 2200-2208
        • Vaccariello M.
        • Javaherian A.
        • Wang Y.
        • Fusenig N.E.
        • Garlick J.A.
        Cell interactions control the fate of malignant keratinocytes in an organotypic model of early neoplasia.
        J Invest Dermatol. 1999; 113: 384-391
        • Mackenzie I.C.
        Growth of malignant oral epithelial stem cells after seeding into organotypical cultures of normal mucosa.
        J Oral Pathol Med. 2004; 33: 71-78
        • Finney M.R.
        • Fanning L.R.
        • Joseph M.E.
        • Goldberg J.L.
        • Greco N.J.
        • Bhakta S.
        Umbilical cord blood-selected CD133(+) cells exhibit vasculogenic functionality in vitro and in vivo.
        Cytotherapy. 2010; 12: 67-78
        • Lindahl R.
        Aldehyde dehydrogenases and their role in carcinogenesis.
        Crit Rev Biochem Mol Biol. 1992; 27: 283-335
        • Armstrong L.
        • Stojkovic M.
        • Dimmick I.
        • et al.
        Phenotypic characterization of murine primitive hematopoietic progenitor cells isolated on basis of aldehyde dehydrogenase activity.
        Stem Cells. 2004; 22: 1142-1151
        • Hess D.A.
        • Meyerrose T.E.
        • Wirthlin L.
        • et al.
        Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity.
        Blood. 2004; 104: 1648-1655
        • Goodell M.A.
        • Brose K.
        • Paradis G.
        • Conner A.S.
        • Mulligan R.C.
        Isolation and functional properties of murine hematopoietic cells that are replicating in vivo.
        J Exp Med. 1996; 183: 1797-1806
        • Wan G.
        • Zhou L.
        • Xie M.
        • Chen H.
        • Tian J.
        Characterization of side population cells from laryngeal cancer cell lines.
        Head and Neck. 2010; 32: 1302-1309
        • Jones J.
        • Sugiyama M.
        • Watt F.M.
        • Speight P.M.
        Integrin expression in normal, hyperplastic, dysplastic, and malignant oral epithelium.
        J Pathol. 1993; 169: 235-243
        • Visus C.
        • Ito D.
        • Amoscato A.
        • et al.
        Identification of human aldehyde dehydrogenase 1 family member A1 as a novel CD8+ T-cell-defined tumor antigen in squamous cell carcinoma of the head and neck.
        Cancer Res. 2007; 67: 10538-10545
        • Ginestier C.
        • Hur M.H.
        • Charafe-Jauffret E.
        • et al.
        ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome.
        Cell Stem Cell. 2007; 1: 555-567
        • Ma S.
        • Chan K.W.
        • Lee T.K.
        • et al.
        Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations.
        Mol Cancer Res. 2008; 6: 1146-1153
        • Huang E.H.
        • Hynes M.J.
        • Zhang T.
        • et al.
        Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis.
        Cancer Res. 2009; 69: 3382-3389
        • Jiang F.
        • Qiu Q.
        • Khanna A.
        • et al.
        Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer.
        Mol Cancer Res. 2009; 7: 330-338
        • Croker A.K.
        • Goodale D.
        • Chu J.
        • et al.
        High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability.
        J Cell Mol Med. 2009; 13: 2236-2252
        • Matsui W.
        • Huff C.A.
        • Wang Q.
        • et al.
        Characterization of clonogenic multiple myeloma cells.
        Blood. 2004; 103: 2332-2336
        • Liu S.
        • Ginestier C.
        • Charafe-Jauffret E.
        • et al.
        BRCA1 regulates human mammary stem/progenitor cell fate.
        Proc Natl Acad Sci USA. 2008; 105: 1680-1685
        • Thiery J.P.
        • Sleeman J.P.
        Complex networks orchestrate epithelial–mesenchymal transitions.
        Nat Rev Mol Cell Biol. 2006; 7: 131-142
        • Batlle E.
        • Sancho E.
        • Francí C.
        • et al.
        The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells.
        Nat Cell Biol. 2000; 2: 84-89
        • Zhou B.P.
        • Deng J.
        • Xia W.
        • et al.
        Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial mesenchymal transition.
        Nat Cell Biol. 2004; 6: 931-940
        • Clay M.R.
        • Tabor M.
        • Owen J.
        • et al.
        Single marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase.
        Head and Neck. 2010; 32: 1195-1201
        • Costea D.E.
        • Tsinkalovsky O.
        • Vintermyr O.K.
        • Johannessen A.C.
        • Mackenzie I.C.
        Cancer stem cells – new and potentially important targets for the therapy of oral squamous cell carcinoma.
        Oral Dis. 2006; 12: 443-454
        • Monroe M.M.
        • Anderson E.C.
        • Clayburgh D.R.
        • Wong M.H.
        Cancer stem cells in Head and Neck Squamous Cell Carcinoma.
        J Oncol. 2011; 2011: 762780
        • Zhou Chen G.
        The cancer stem cell concept in progression of head and neck cancer.
        J Oncol. 2009; 2009: 894064
        • Bianchini C.
        • Ciorba A.
        • Pelucchi S.
        • Piva R.
        • Pastore A.
        Head and neck cancer: the possible role of stem cells.
        Eur Arch Otorhinolaryngol. 2008; 265: 17-20
        • Sayed S.I.
        • Dwivedi R.C.
        • Katna R.
        • Garg A.
        • Pathak K.A.
        • Nutting C.M.
        • et al.
        Implications of understanding cancer stem cell (CSC) biology in head and neck squamous cell cancer.
        Oral Oncol. 2011; 47: 237-243
        • Harper L.J.
        • Piper K.
        • Common J.
        • Fortune F.
        • Mackenzie I.C.
        Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma.
        J Oral Pathol Med. 2007; 36: 594-603
        • Pries R.
        • Wittkopf N.
        • Trenkle T.
        • Nitsch S.M.
        • Wollenberg B.
        Potential stem cell market CD44 is costitutively expressed in permanent cell lines of head and neck cancer.
        In vivo. 2008; 22: 89-92
        • Yu D.
        • Jin C.S.
        • Chen O.
        • Wen L.J.
        • Gao L.F.
        Biological characteristics of highly tumorigenic CD44+CD133+ subpopulation of laryngeal carcinoma cells.
        Zhonghua Zhong Liu Za Zhi. 2009; 31: 99-103
        • Califano J.
        • Westra W.H.
        • Meininger G.
        • Corio R.
        • Koch W.M.
        • Sidransky D.
        Genetic progression and clonal relationship of recurrent premalignant head and neck lesions.
        Clin Cancer Res. 2000; 2: 347-352
        • Graziano A.
        • d’Aquino R.
        • Tirino V.
        • Desiderio V.
        • Rosssi A.
        • Pirozzi G.
        The stem cell hypothesis in head and neck cancer.
        J Cell Biochem. 2008; 103: 408-412
        • Mackenzie
        Stem cells properties and epithelial malignancies.
        Eur J Cancer. 2006; 42: 1204-1212
        • Hanahan D.
        • Weinberg R.A.
        The hallmarks of cancer.
        Cell. 2000; 100: 57-70
        • Goodell M.A.
        • Rosenzweig M.
        • Kim H.
        • Marks D.F.
        • DeMaria M.
        • Paradis G.
        Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species.
        Nat Med. 1997; 3: 1337-1345
        • Wang J.
        • Guo L.P.
        • Chen L.Z.
        • Zeng Y.X.
        • Lu S.H.
        Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line.
        Cancer Res. 2007; 67: 3716-3724
        • Tabor M.H.
        • Clay M.R.
        • Owen J.H.
        • Bradford C.R.
        • Carey T.E.
        • Wolf G.T.
        • et al.
        Head and neck cancer stem cells: the side population.
        Laryngoscope. 2011; 121: 527-533
        • Fuchs E.
        • Tumbar T.
        • Guasch G.
        Socializing with the neighbors: stem cells and their niche.
        Cell. 2004; 116: 769-778
        • De Boeck A.
        • Narine K.
        • De Neve W.
        • Mareel M.
        • Bracke M.
        • De Wever O.
        Resident and bone marrow-derived mesenchymal stem cells in head and neck squamous cell carcinoma.
        Oral Oncoly. 2010; 46: 336-342
        • Veeravagu A.
        • Bababeygy S.R.
        • Kalani M.Y.
        • Hou L.C.
        • Tse V.
        The cancer stem cell-vascular niche complex in brain tumor formation.
        Stem Cells Dev. 2008; 17: 859-867
        • Krishnamurhy S.
        • Dong Z.
        • Vodopyanov D.
        • et al.
        Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells.
        Cancer Res. 2010; 70: 9969-9978
        • Morrison S.J.
        • Spradling A.C.
        Stem cells and niches: mechanisms that promote stem cell maintenance throughout life.
        Cell. 2008; 132: 598-611
        • Chen C.Y.
        • Chiou S.H.
        • Huang C.Y.
        • et al.
        Distinct population of highly malignant cells in a head and neck squamous cell carcinoma cell line established by xenograft model.
        J Biomed S. 2009; 16: 100-111
        • Singh S.K.
        • Clarke I.D.
        • Terasaki M.
        Identification of a cancer stem cell in human brain tumor.
        Cancer Res. 2003; 63: 5821-5828
        • Park I.
        • Morrison S.J.
        • Clarke M.F.
        Bmi-1, stem cells, and senescence regulation.
        J Clin Invest. 2004; 113: 175-179
        • Chen H.
        • Zhou L.
        • Dou T.
        • Wan G.
        • Tang H.
        • Tian J.
        BMI1’s maintenance of the proliferative capacity of laryngeal cancer stem cells.
        Head and Neck. 2011; 33: 1115-1125
        • Chen H.
        • Zhou L.
        • Dou T.
        • Wan G.
        • Dou T.
        • Tian J.
        BMI1 promotes the progression of laryngeal squamous cell carcinoma.
        Oral Oncol. 2011; 47: 472-481
        • Park I.K.
        • Qian D.
        • Kiel M.
        • et al.
        Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells.
        Nature. 2003; 423: 302-305
        • Lo W.L.
        • Yu C.C.
        • Chiou G.Y.
        • et al.
        MicroRNA-200c attenuates tumor growth and metasis of presumptive head and neck squamous cell carcinoma stem cells.
        J Pathol. 2011; 223: 482-495
        • Hudson D.L.
        • Speight P.M.
        • Watt F.M.
        Altered expression of CD44 isofroms in squamous-cell carcinomas and cell lines derived from them.
        Int J Cancer. 1996; 66: 457-463
        • Ue T.
        • Yokozaki H.
        • Kagai K.
        • et al.
        Reduced expression of the CD44 variant exons in oral squamous cell carcinoma and its relationship to metastasis.
        J Oral Pathol Med. 1998; 27: 197-201
        • Kanke M.
        • Fujuu M.
        • Kameyama K.
        • et al.
        Role of CD44 variant exon 6 in invasion of head and neck squamous cell carcinoma.
        Arch Otolaryngol Head Neck Surg. 2000; 126: 1217-1223
        • Mostaan L.V.
        • Khorsandi M.T.
        • Sharifian S.M.
        • et al.
        Correlation between E-cadherin and CD44 adhesion molecules expression and cervical lymph node metastasis in oral tongue SCC: predictive significance or not.
        Pathol Res Pract. 2011; 207: 448-451
        • Faber A.
        • Barth C.
        • Hormann K.
        • et al.
        CD44 as a stem cell marker in head and neck squamous cell carcinoma.
        Oncol Rep. 2011; 26: 321-326
        • Piffkò J.
        • Bànkfalvi A.
        • Klauke K.
        • et al.
        Unaltered strong immunohistochemical expression of CD44–v6 and -v5 isoforms during development and progression of oral squamous cell carcinomas.
        J Oral Pathol Med. 1996; 25: 502-506
        • Piffkò J.
        • Bànkfalvi A.
        • Joos U.
        • Ofner D.
        • Krassort M.
        • Schmid K.W.
        Immunophenotypic analysis of normal mucosa and squamous cell carcinoma of the oral cavity.
        Cancer Detect Prev. 1999; 23: 45-56
        • Hirvikoski P.
        • Tammi R.
        • Kumpulainen E.
        • et al.
        Irregular expression of hyaluronan and its CD44 receptor is associated with metastatic phenotype in laryngeal squamous cell carcinoma.
        Virchows Arch. 1999; 434: 37-44
        • Staibano S.
        • Merolla F.
        • Testa D.
        • et al.
        OPN/CD44v6 overexpression in laryngeal dysplasia and correlation with clinical outcome.
        Br J Cancer. 2007; 97: 1545-1551
        • De Jong M.C.
        • Pramana J.
        • Van Der Wal J.E.
        • et al.
        CD44 expression predicts local recurrence after radiotherapy in larynx cancer.
        Clin Cancer Res. 2010; 16: 5329-5338
        • Davis S.J.
        • Divi V.
        • Owen J.H.
        • Bradford C.R.
        • Carey T.E.
        • Papagerakis S.
        • et al.
        Metastatis potential of Cnacer Stem Cells in head and neck squamous cell carcinoma.
        Arch Otolaryngol Head and Neck Surg. 2010; 136: 1260-1266
        • B Joshua
        • MJ Kaplan
        • I Doweck
        • et al.
        Frequency of cells expressing CD44, a head and neck cancer stem cell marker: correlation with tumor aggressiveness.
        Head and Neck. 2011; ([Epub ahead of print])
        • Franzmann E.J.
        • Weed D.T.
        • Civantos F.J.
        • Goodwin W.J.
        • Bourgiugnon L.Y.
        A novel CD44v3 isoform is involved in head an dneck squamous cell carcinoma progression.
        Otolaryngol Head Nack Surg. 2001; 124: 426-432
        • Brown R.L.
        • Reinke L.M.
        • Damerow M.S.
        • et al.
        CD44 splice isofrom switching in human and mouse epithelium is essential for epithelial–mesenchymal transition and breast cancer progression.
        J Clin Invest. 2011; 3: 1064-1074
        • Umezawa A.
        • Gorham J.D.
        Dueling models in head and neck tumor formation.
        Lab Invest. 2010; 90: 1546-1548
        • Cameron S.
        • Dahler A.
        • Endo-Munoz L.
        • et al.
        Tumour initiating activity and tumour morphology of HNSCC is modulated by interactions between clonal variants within the tumour.
        Lab Invest. 2010; 90: 1594-1603
        • Slaughter D.P.
        • Southwick H.W.
        • Smejkal W.
        Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin.
        Cancer. 1953; 6: 963-968
        • Califano J.
        • Van Der Riet P.
        • Westra W.
        • et al.
        Genetic progression model for head and neck cancer: implications for field cancerization.
        Cancer Res. 1996; 56: 2488-2492
        • Leemans C.R.
        • Braakhuis B.J.M.
        • Brakenhoff R.H.
        The molecular biology of head and neck cancer.
        Nat Rev. 2011; 11: 9-22
        • Hoeijmakers J.H.
        Genome maintenance mechanisms for preventing cancer.
        Nature. 2001; 411: 366-374
        • Flores-Obando R.E.
        • Gollin S.M.
        • Ragin C.C.
        Polymorphisms in DNA damage response genes and head and neck cancer risk.
        Biomarkers. 2010; 15: 379-399
        • Canova C.
        • Hashibe M.
        • Simonato L.
        • et al.
        Genetic associations of 115 polymorphisms with cancers of the upper aerodigestive tract across 10 european countries: the ARCAGE project.
        Cancer Res. 2009; 69: 2956-2965
        • Sabitha K.
        • Reddy M.V.
        • Jamil K.
        Smoking related risk involved in individuals carrying genetic variants of CYP1A1 gene in head and neck cancer.
        Cancer Epidemiol. 2010; 34: 587-592
        • Furusawa J.
        • Zhang H.
        • Vural E.
        • et al.
        Distinct epigenetic profiling in head and neck squamous cell carcinoma stem cells.
        Otolaryngol Head Neck Surg. 2011; 144: 900-909
        • Gammon L.
        • Biddle A.
        • Fazil B.
        • Harper L.
        • Mackenzie I.C.
        Stem cell characteristics of cell sub-populations in cell lines derived from head and neck cancers of Fanconi anemia patients.
        J Oral Pathol Med. 2010; 40: 143-152
        • Masserot C.
        • de Latour R.P.
        • Rocha V.
        • et al.
        Head and neck squamous cell carcinoma in 13 patients with Fanconi anemia after hematopoietic stem cell transplantation.
        Cancer. 2008; 113: 3315-3322
        • Scherzed A.
        • Hackenberg S.
        • Froelich K.
        • et al.
        BMSC enhance the survival of paclitaxel treated squamous cell carcinoma cells in vivo.
        Cancer Biology and Therapy. 2011; 11: 1-9
        • Krishnamurthy S.
        • Dong Z.
        • Vodopyanov D.
        • et al.
        Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells.
        Cancer Res. 2010; 70: 9969-9978
        • Hurt E.M.
        • Kawasaki B.T.
        • Klarmann G.J.
        • Thomas S.B.
        • Farrar W.L.
        CD44+ CD24(-) postate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis.
        Br J Cancer. 2008; 98: 756-765
        • Singh S.K.
        • Hawkins C.
        • Clarke I.D.
        • Squire J.A.
        • Bayani J.
        • Hide T.
        • et al.
        Identification of human brain tumour initiating cells.
        Nature. 2004; 432: 396-401
        • Masuda M.
        • Kuratomi Y.
        • Shiratsuchi H.
        • Nakashima T.
        • Naonobu K.
        • Komiyama S.
        Decreased expression in early-stage tongue carcinoma associates with late nodal metastases following interstitial brachytherapy.
        Head Neck. 2000; 22: 662-665
        • Fonseca I.
        • Pereira T.
        • Rosa-Santos J.
        • Soares J.
        Expression of CD44 isoforms in squamous cell carcinoma of the border of the tongue: A correlation with histological grade, pattern of stromal invasion and cell differentiation.
        J Surg Oncol. 2001; 76: 115-120
        • Oliveira D.T.
        • Sherriff M.
        • Odell E.W.
        Expression of variant exons by primary and metastatic oral squamous carcinomas.
        J Oral Pathol Med. 1998; 27: 303-307
        • Herold-Mende C.
        • Seiter S.
        • Borno A.
        • Patzelt E.
        • Schupp M.
        • Zoller J.
        • et al.
        Expression of CD44 splice variants in squamous epithelia and squamous carcinomas of the head and neck.
        J Pathol. 1996; 179: 66-73
        • Kuo M.Y.
        • Cheng S.J.
        • Chen H.M.
        • Kok S.H.
        • Hahn L.J.
        • Chiang C.P.
        Expression of CD44s, CD44v5, CD44v6 and CD44v7-8 in betel quid chewing-associated oral premalignant lesions and squamous cell carcinomas in Taiwan.
        J Oral Pathol Med. 1998; 27: 428-433
        • Bahar R.
        • Kunishi M.
        • Kayada Y.
        • Yoshiga K.
        CD44 variant 6 (CD44v6) expression as a progression marker in benign, premalignant and malignant oral epithelial tissues.
        Int J Oral Maxillofac Surg. 1997; 26: 443-446
        • Kunishi M.
        • Kayada Y.
        • Yoshiga K.
        Down-regulated expression of CD44 variant 6 in oral squamous cell carcinomas and its relationship to regional lymph node metastasis.
        Int J Oral Maxillofac Surg. 1997; 26: 280-283
        • Soukka T.
        • Salmi M.
        • Joensuu H.
        • Hakkinen L.
        • Sointu P.
        • Koulu L.
        • et al.
        Regulation of CD44v6-containing isoforms during proliferation of normal and malignant epithelial cells.
        Cancer Res. 1997; 57: 2281-2289
        • Stoll C.
        • Baretton G.
        • Soost F.
        • Lohrs U.
        The influence of CD44 splice variants to the outcome of patients with oral squamous cell carcinomas.
        Adv Exp Med Biol. 1998; 451: 51-55
        • Stoll C.
        • Baretton G.
        • Soost F.
        • Terpe H.J.
        • Domide P.
        • Lohrs U.
        Prognostic importance of the expression of CD44 splice variants in oral squamous cell carcinomas.
        Oral Oncol. 1999; 35: 484-489
        • Higashikawa K.
        • Yokozaki H.
        • Ue T.
        • Taniyama K.
        • Ishikawa T.
        • Tarin D.
        • et al.
        Evaluation of CD44 transcription variants in human digestive tract carcinomas and normal tissues.
        Int J Cancer. 1996; 66: 11-17
        • Van Hal N.L.
        • van Dongen G.A.
        • Stigter-van Walsum M.
        • Snow G.B.
        • Brakenhoff R.B.
        Characterization of CD44v6 isoforms in head and neck squamous cell carcinoma.
        Int J Cancer. 1999; 82: 837-845
        • Ingle R.
        • Jennings T.A.
        • Goodman M.L.
        • Pilch B.Z.
        • Bergman S.
        • Ross J.S.
        CD44 expression in sinonasal inverted papillomas and associated squamous cell carcinoma.
        Am J Clin Pathol. 1998; 109: 309-314
        • Spafford M.F.
        • Koeppe J.
        • Pan Z.
        • Archer P.J.
        • Meyers A.D.
        • Franklin A.D.
        Correlation of tumour markers p53, bcl-2, CD34, CD44H, CD44v6 and ki-67 with survival and metastasis in laryngeal squamous cell carcinoma.
        Arch Otolaryngol Head Neck Surg. 1996; 122: 627-632
        • Repassy G.
        • Forster-Horvath C.
        • Juhasz A.
        • Adany R.
        • Tamassy R.
        • Timar J.
        Expression of invasion markers CD44v6/v3, NM23 and MMP2 in laryngeal and hypopharyngeal carcinoma.
        Pathol Oncol Res. 1998; 4: 14-21
        • Ostwald J.
        • Pracht O.
        • Rhode E.
        • Kramp B.
        Are the products of CD44 exons v5 and v6 markers for mestastasis of laryngeal carcinomas.
        Laryngorhinootologie. 1997; 76: 295-299
        • Sugar J.
        • Vereczkey I.
        • Toth J.
        • Peter I.
        • Banhidy F.
        New aspects in the pathology of the preneoplastic lesions of the larynx.
        Acta Otolaryngol (Stockh.). 1997; 527: 52-56
        • Ioachim E.
        • Assimakopoulos D.
        • Goussia A.C.
        • Peschos D.
        • Skevas A.
        • Agnantis N.J.
        Glycoprotein CD44 expression in benign, premalignant and malignant epithelial lesions of the latynx: An immunohistochemical study including correlation with Rb, p53, Ki-67 and PCNA.
        Histol Histopathol. 1999; 14: 1113-1118
        • Staibano S.
        • Merolla F.
        • Testa D.
        • Iovine R.
        • Mascolo M.
        • Guarino V.
        • et al.
        OPN/CD44v6 overexpression in laryngeal dysplasia and correlation with clinical outcome.
        Br J Cancer. 2007; 97: 1545-1551
        • Lim Y.C.
        • Oh S.Y.
        • Cha Y.Y.
        • Kim S.H.
        • Jin X.
        • Kim H.
        Cancer stem cell traits in squamospheres derived from primary head and neck squamous cell carcinomas.
        Oral Oncol. 2011; 47 ([Epub 2010 Dec 16]): 83-91